Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x-9\ne0\Rightarrow x\ne9\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)
\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)
2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)
\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)
\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)
\(=\frac{\sqrt{\frac{2+2\sqrt{2}+1}{3}}+\sqrt{\frac{2-2\sqrt{2}+1}{3}}}{\sqrt{\frac{2+2\sqrt{2}+1}{3}}-\sqrt{\frac{2-2\sqrt{2}+1}{3}}}\)
\(=\frac{\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{3}}+\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{3}}}{\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{3}}-\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{3}}}\)
\(=\frac{\frac{\sqrt{2}+1+\sqrt{2}-1}{\sqrt{3}}}{\frac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{3}}}=\frac{\frac{2\sqrt{2}}{\sqrt{3}}}{\frac{2}{\sqrt{3}}}=\sqrt{2}\)
\(\frac{A}{\sqrt{2}}=\frac{1}{2+\sqrt{4+2\sqrt{3}}}+\frac{1}{2-\sqrt{4-2\sqrt{3}}}\)
\(\frac{A}{\sqrt{2}}=\frac{1}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{1}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(\frac{A}{\sqrt{2}}=\frac{1}{2+\sqrt{3}+1}+\frac{1}{2-\left(\sqrt{3}-1\right)}=\frac{1}{3+\sqrt{3}}+\frac{1}{3-\sqrt{3}}\)
\(\frac{A}{\sqrt{2}}=\frac{3-\sqrt{3}+3+\sqrt{3}}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}=\frac{6}{9-3}=\frac{6}{6}=1\)
=> \(A=\sqrt{2}\)
VẬY \(A=\sqrt{2}\)
A=\(\frac{2\sqrt{2}-\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}}{3}\)
ĐÚNG KO ♥
bn tham khảo câu hỏi tương tự nha