Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}a.b\ne0\left(!\right)\\9a^2-b\ne0\left(!!\right)\\10a^2-3b^2-5ab=0\left(1\right)\\A=\dfrac{2a-b}{3a-b}+\dfrac{5b-a}{3a+b}-3\left(2\right)\end{matrix}\right.\)
Từ (!) \(\Rightarrow\left(1\right)\Leftrightarrow10-3\left(\dfrac{b}{a}\right)^2-5\left(\dfrac{b}{a}\right)=0\)(3)
Đặt b/a =x
\(\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}3x^2+5x-10=0\\\left[{}\begin{matrix}x_1=\dfrac{-5-\sqrt{5.29}}{6}\\x_2=\dfrac{-5+\sqrt{5.29}}{6}\end{matrix}\right.\end{matrix}\right.\)(4)
Từ (!) \(\Rightarrow\left(2\right)\Leftrightarrow A=\dfrac{2-x}{3-x}+\dfrac{5x-1}{3+x}-3=\left(1-\dfrac{1}{3-x}\right)+\left(5-\dfrac{16}{x+3}\right)-3=B+3\)
\(B=\dfrac{1}{x-3}-\dfrac{16}{x+3}=\dfrac{x+3-16x+48}{x^2-9}=\dfrac{-15x+51}{x^2-9}=\dfrac{3\left(17-5x\right)}{x^2-9}\)
Từ (4)\(\Rightarrow\left\{{}\begin{matrix}17-5x=3x^2+7\\B=\dfrac{3\left(3x^2+7\right)}{x^2-9}\end{matrix}\right.\) \(B=9+\dfrac{81+27}{x^2-9}\)
\(A=12+\dfrac{108}{x^2-9}\)
Bạn tự thay vào :\(\begin{matrix}A\left(x_1\right)=\\A\left(x_2\right)=\end{matrix}\) chú ý bp => x^2 --> mới thay vào
Mình nghi đề của bạn nhầm dấu: biểu thức (1)
\(10a^2-3b^2-5ab=0\Rightarrow10\left(a-\dfrac{b}{4}\right)^2-\dfrac{29b^2}{8}=0\)
\(\Rightarrow a=b=0\)
tự làm tiếp nhé, phần khó nhất mk đã giúp bn r`h thay vào thôi
Vì \(b>a>0\Rightarrow P=\frac{a-b}{a+b}< 0\)
Ta có : \(P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4}{16}\)
\(\Rightarrow\orbr{\begin{cases}P=-\frac{1}{2}\\P=\frac{1}{2}\end{cases}}\) Mà P < 0 nên \(P=-\frac{1}{2}\)
Vậy \(P=\frac{a-b}{a+b}=-\frac{1}{2}\)
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0
Ta có: \(2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow\left(b-2a\right)\left(2b-a\right)=0\)
Vì a > b > 0 nên loại nghiệm b = 2a
\(\Rightarrow a=2b\) thế vào P ta được
\(P=\frac{3.2b-b}{2.2b+b}=1\)
Ta có :
\(2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow\)2\(a^2-4ab-ab+2b^2=0\)
\(\Leftrightarrow\)(2a-b)(a-2b)=0
\(\Leftrightarrow\)a=2b (vì a>b>0 )
Thay a=2b vào P ta được : P=\(\dfrac{2.2b+b}{3.2b-b}\)
=1
ĐKXĐ : \(a\ne b\)\(;\)\(a\ne-b\)
\(4a^2+b^2=5ab\)
\(\Leftrightarrow\)\(\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)
\(\Leftrightarrow\)\(4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\left(loai\right)\\4a=b\end{cases}}}\)
\(\Rightarrow\)\(4a=b\)
\(\Rightarrow\)\(M=\frac{ab}{a^2-b^2}=\frac{a.4a}{\left(a-b\right)\left(a+b\right)}=\frac{4a^2}{\left(a-4a\right)\left(a+4a\right)}=\frac{4a^2}{-15a^2}=\frac{-4}{15}\)
...
Bài 1:
a^2-5ab-6b^2=0
=>a^2-6ab+ab-6b^2=0
=>a*(a-6b)+b(a-6b)=0
=>(a-6b)(a+b)=0
=>a=-b hoặc a=6b
TH1: a=-b
\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)
TH2: a=6b
\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)