\(x^3-12x^2y+48xy^2-64y^3\), biết x-y=1 và 3x=2y

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

Để \(M=5xy^3+4x^2y^2-12x^3y\\ \) và  \(A=x\left(x^3+12x^2y-5y^3\right)\) ko âm

\(\Rightarrow\)\(M+A\)cũng đồng thời >0

\(\Rightarrow\)\(M+A=\left(5xy^3+4x^2y^2-12x^3y\right)+\left(x^4+12x^3y-5y^3x\right)\)

\(\Rightarrow\)\(M+A=\left(5xy^3-5xy^3\right)-\left(12x^3y-12x^{3y}\right)+\left(x^4+4x^2y^2\right)\)

\(\Rightarrow M+A=x^4+4x^2y^2\)

Mà \(x^4\ge0\) \(;4x^2y^2\ge0\)

\(\Rightarrow\)\(x^4+4x^2y^2\ge0\)

\(\Rightarrow\)\(M+A\ge0\)

20 tháng 1 2017

Thay giá trị x, y vào là tính được mà ??

20 tháng 1 2017

phải thu gọn đã nhé

2 tháng 5 2020

\(\left(7x-3x^2y+\frac{1}{2}\right)-N=2xy-3x^2y+\frac{1}{3}x-2\)

\(N=\left(7x-3x^2y+\frac{1}{2}\right)-\left(2xy-3x^2y+\frac{1}{3}x-2\right)\)

\(N=7x-3x^2y+\frac{1}{2}-2xy+3x^2y-\frac{1}{3}x+2\)

\(N=\left(7-\frac{1}{3}\right)x+\left(3x^2y-3x^2y\right)-2xy+\left(\frac{1}{2}+2\right)\)

\(N=\frac{20}{3}x+0-2xy+\frac{5}{2}\)

\(N=\frac{20}{3}x-2xy+\frac{5}{2}\)

Thay x = -1 ; y = 1/2 vào N ta được :

\(N=\frac{20}{3}\left(-1\right)-2\left(-1\right)\cdot\frac{1}{2}+\frac{5}{2}\)

\(N=\frac{-20}{3}-\left(-1\right)+\frac{5}{2}\)

\(N=\frac{-20}{3}+1+\frac{5}{2}\)

\(N=\frac{-19}{6}\)

Vậy giá trị của N = -19/6 khi x = -1 ; y = 1/2

28 tháng 10 2016

Cách 1: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\Rightarrow\begin{cases}x=2.k\\y=3.k\\z=4.k\end{cases}\)

Ta có: \(A=\frac{x+2y+3z}{3x+2y+z}=\frac{2.k+2.3.k+3.4.k}{3.2.k+2.3.k+4.k}=\frac{2.k+6.k+12.k}{6.k+6.k+4.k}=\frac{20.k}{16.k}=\frac{5}{4}\)

Cách 2: Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{3x}{6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y+3z}{2+6+12}=\frac{x+2y+3z}{20}\left(1\right)\)

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{3x}{6}=\frac{2y}{6}=\frac{3x+2y+z}{6+6+4}=\frac{3x+2y+z}{16}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x+2y+3z}{20}=\frac{3x+2y+z}{16}\)

\(\Rightarrow A=\frac{x+2y+3z}{3x+2y+z}=\frac{20}{16}=\frac{5}{4}\)