Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}\)\(+\frac{1}{2.3}+\)\(\frac{1}{3.4}\)\(+\)\(.............+\)\(\frac{1}{2017.2018}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2017}-\frac{1}{2018}\)
\(=\frac{1}{1}-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+......+\frac{2018-2017}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
=>\(-B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2012}\right)\)
=\(\frac{1}{2}.\frac{2}{3}...\frac{2011}{2012}=\frac{1}{2012}\)
Ta có: \(1-\frac{2}{n.\left(n+1\right)}\)
=\(\frac{n.\left(n+1\right)-2}{n\left(n+1\right)}\)
=\(\frac{n^2+n-2}{n.\left(n+1\right)}\)
=\(\frac{\left(n^2-1\right)+\left(n-1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+1\right)+\left(n-1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+1+1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\)
=>\(1-\frac{2}{n.\left(n+1\right)}=\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\left(1\right)\)
Lại có: \(M=\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right)....\left(1-\frac{2}{99.100}\right)\)
=> \(M=\left(1-\frac{2}{2.\left(2+1\right)}\right).\left(1-\frac{2}{3.\left(3+1\right)}\right).\left(1-\frac{2}{4.\left(4+1\right)}\right)....\left(1-\frac{2}{99.\left(99+1\right)}\right)\left(2\right)\)
Thay (1) vào (2) ta được:
\(M=\frac{\left(2-1\right).\left(2+2\right)}{2.\left(2+1\right)}.\frac{\left(3-1\right).\left(3+2\right)}{3.\left(3+1\right)}.\frac{\left(4-1\right).\left(4+2\right)}{4.\left(4+1\right)}...\frac{\left(99-1\right).\left(99+2\right)}{99.\left(99+1\right)}\)
=> \(M=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{98.101}{99.100}\)
=> \(M=\frac{1.4.2.5.3.6....98.101}{2.3.3.4.4.5....99.100}\)
=> \(M=\frac{\left(1.2.3....98\right).\left(4.5.6....101\right)}{\left(2.3.4....99\right).\left(3.4.5....100\right)}\)
=> \(M=\frac{1.101}{99.3}\)
=> \(M=\frac{101}{297}\)
Vậy \(M=\frac{101}{297}\)
\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)
\(\Rightarrow F=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)
\(\Rightarrow F=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\left(đpcm\right)\)
\(H=2+4+6+...+2n\)
Ta có : 1/ 1.2 + 1/ 2.3 + 1/ 3.4 + ... + 1/ n.( n + 1 ) .
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/n - 1/ n+1 .
= 1 - 1/ n + 1 .
= n+1 / n+1 - 1/ n+1 .
= n/ n+1 .
Đáp sô : n/ n+1
Thay n = a nha / lúc trước có giải r nên ko giải lại rắc rối
\(N=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{a\left(a+1\right)}\)
\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{a}-\frac{1}{a-1}\)
\(\Rightarrow N=1-\frac{1}{a-1}\)
\(\Rightarrow N=\frac{a-1-1}{a-1}\)
\(\Rightarrow N=\frac{a-2}{a-1}\)
Ta có công thức :
\(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}=\frac{n-1}{n}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)
\(A=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\)