\(\dfrac{2}{x+y}\) biết x + y = 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Ta có \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)

với x=2y, thao vào, ta có A=1/3

với x=-y thay vào không thỏa mãn 

^.^

17 tháng 8 2018

\(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)

\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\) 

\(\Rightarrow x-2y=0\) vì \(x+y\ne0\)

\(\Leftrightarrow x=2y\Rightarrow A=\frac{2y-y}{2y+y}=\frac{1}{3}\)

2 tháng 3 2017

vi a/x + b/y + c/z =0 suy ra ayz/xyz + bxz/xyz + cxy/xyz =0 suy ra ayz+bxz+cxy /xyz =0 suy ra ayz + bxz + cxy =0

vi x/a + y/b =z/c =0 suy ra (x/a + y/b + z/c )^2 =0 suy ra x^2/a^2 +y^2/b^2 + z^2/c^2 + 2(xy/ab + xz/ac + yz/bc) =0

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(cxy+ bxz +ayz /abc) =0

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =0

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 +2011 = 2011

24 tháng 4 2017

Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

GV
24 tháng 4 2017

Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)

4 tháng 5 2017

a) giải phương trình

\(\dfrac{2x^2-3x-2^{ }}{_{ }x^2-4}\) = 2

=>\(\dfrac{2x^2-3x-2}{x^2-4}\) = \(\dfrac{2\left(x^2-4\right)}{x^2-4}\)

=>2x2 - 3x - 2 = 2(x2 - 4)

<=>2x2 -3x - 2 = 2x2 - 8

<=>2x2 - 2x2 - 3x = -8 + 2

<=>-3x = -6

<=> x = 2

Vậy không tồn tại giá trị nào của x thỏa mãn điều kiện của bài toán

b) Ta phải giải phương trình

\(\dfrac{6x-1}{3x+2}\) = \(\dfrac{2x+5}{x-3}\)

=>x = \(\dfrac{-7}{38}\)

c) Ta phải giải phương trình

\(\dfrac{y+5}{y-1}\) - \(\dfrac{y+1}{y-3}\) = \(\dfrac{-8}{\left(y-1\right)\left(y+1\right)}\)

không tồn tại giá trị nào của y thỏa mãn điều kiện của bài toán

3 tháng 1 2019

\(ĐKXĐ:x\ne-3;2\)

\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{1}{x-2}\)

\(=\frac{x^2+4x+4}{\left(x+3\right)\left(x+2\right)}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{x+3}{\left(x+2\right)\left(x+3\right)}\)

\(=\frac{x^2+4x+4-5-x-3}{\left(x+2\right)\left(x+3\right)}=\frac{x^2+3x-4}{\left(x+3\right)\left(x+2\right)}=\frac{\left(x+4\right)\left(x-1\right)}{\left(x+3\right)\left(x+2\right)}\)

\(x^2-9=0\Leftrightarrow x=3\left(vì:x\ne-3\right)\)

\(\Rightarrow P=\frac{7}{15}\)

\(P\inℤ\Leftrightarrow x^2+3x-4⋮x^2+5x+6\Leftrightarrow2x+10⋮x^2+5x+6\Leftrightarrow12⋮x^2+5xx+6\)

\(................\left(dễ\right)\)

3 tháng 1 2019

P/s: shitbo sai rồi nha bạn!Nếu không tin thì thay x = 3 vào P ban đầu và giá trị P sau khi rút gọn sẽ thấy sự khác biệt =)

ĐK: \(x\ne-3;x\ne2\)

a) \(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}\)

\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)

Thay vào điều kiện,tìm loại x = -3 .Tìm được x =3

Ta có: \(P=\frac{x-4}{x-2}=\frac{3-4}{3-2}=-1\)

c)Ta có: \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)

Để P có giá trị nguyên thì \(\frac{2}{x-2}\) nguyên hay \(x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Suy ra \(x=\left\{0;1;3;4\right\}\)

22 tháng 12 2014

\(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\Rightarrow x^2-y^2-y^2-xy=0\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)-y\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x-2y=0\)\(\left(x+y\ne0\right)\)

\(\Rightarrow x=2y\)

Thay vào A tính đc giá trị của A

AH
Akai Haruma
Giáo viên
25 tháng 11 2017

Lời giải:

Ta có \(\frac{x^2+y^2}{xy}=\frac{25}{12}\)

\(\Leftrightarrow 12(x^2+y^2)-25xy=0\)

\(\Leftrightarrow (3x-4y)(4x-3y)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-4y=0\\4x-3y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4y}{3}\left(1\right)\\x=\dfrac{3y}{4}\left(2\right)\end{matrix}\right.\)

Với (1):

\(A=\frac{x-y}{x+y}=\frac{\frac{4}{3}y-y}{\frac{4}{3}y+y}=\frac{\frac{1}{3}y}{\frac{7}{3}y}=\frac{1}{7}\)

Với (2)

\(A=\frac{x-y}{x+y}=\frac{\frac{3}{4}y-y}{\frac{3}{4}y+y}=\frac{\frac{-1}{4}y}{\frac{7}{4}y}=\frac{-1}{7}\)

Vậy

\(A=\pm \frac{1}{7}\)

1 tháng 12 2017

thank

10 tháng 1 2021

Ta có: \(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy+2y^2=0\)\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Vì \(x+y\ne0\Rightarrow x=2y\)

=> \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)