\(\dfrac{x-y}{x+y}\) biết x2 - 2y
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

a) ĐKXĐ : \(x+y\ne0\)

\(x^2-2y^2=xy\)

\(x^2-y^2-y^2-xy=0\)

\(\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)

\(\left(x+y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(Loai\right)\\x-2y=0\left(Chon\right)\end{matrix}\right.\)

Với x - 2y = 0 ta có x = 2y

Thay x = 2y vào A ta có :

\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

1 tháng 12 2018

a)

Ta có:

\(x^2-2y^2=xy\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=\left(x+y\right)\left(x-2y\right)=0\)

=>x-2y=0=>x=2y

Thế vào A rùi giải

9 tháng 12 2017

1. a) Ta có: \(x^2-2y^2=xy\) \(\Leftrightarrow\) \(x^2-xy-2y^2=0\)

\(\Leftrightarrow\) \(x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow\) \(x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\) \(\left(x+y\right)\left(x-2y\right)=0\)

\(\left(x+y\right)\ne0\) nên \(x-2y=0\) hay \(x=2y\). Thay \(x=2y\) vào A, ta được:

\(A=\dfrac{\left(2y\right)^2-y^2}{\left(2y\right)^2+y^2}=\dfrac{4y^2-y^2}{4y^2+y^2}=\dfrac{3y^2}{5y^2}=\dfrac{3}{5}\)

3 tháng 3 2017

= \(\dfrac{1}{2}\)nha

3 tháng 3 2017

\(\dfrac{3x-2y}{3x+2y}=\dfrac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\dfrac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}=\dfrac{1}{4}\)

thay từ đề vào ok

20 tháng 7 2017

ta có:

 \(\left(3x-2y\right)^2=9x^2-12xy+4y^2=20xy-12xy=8xy\)

\(\Rightarrow3x-2y=\sqrt{8xy}\)(1)

\(\left(3x+2y\right)^2=9x^2+12xy+4y^2=20xy+12xy=32xy\)

\(\Rightarrow3x+2y=\sqrt{32xy}\)(2)

từ (1) và (2) 

\(\Rightarrow\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}=0,5\)

8 tháng 5 2018

a) A = ( 6x + 7)( 2x - 3) - ( 4x + 1)( 3x - \(\dfrac{7}{4}\))

A = 12x2 - 18x + 14x - 21 - ( 12x2 - 7x + 3x - \(\dfrac{7}{4}\))

A = \(\dfrac{-77}{4}\)

Vậy biểu thức trên ko phụ thuộc vào biến

b) x2 - 2y2 = xy

⇔ x2 - xy - 2y2 = 0

⇔ x2 + xy - 2xy - 2y2 = 0

⇔ x( x + y) - 2y( x + y) = 0

⇔ ( x - 2y )( x + y ) = 0

Do : x + y # 0

⇒ x - 2y = 0

⇔ x = 2y

Ta có : P = \(\dfrac{x-y}{x+y}\) ( x + y # 0 ; y # 0)

P = \(\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

KL....

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

27 tháng 7 2018

\(A=\left(5x-2y\right)\left(5x+2y\right)\)

\(A=\left(5x\right)^2-\left(2y\right)^2\)

\(A=25x^2-4y^2\)

\(A=25.\left(-2\right)^2-4\left(-10\right)^2\)

\(A=25.4-4.100\)

\(A=100-400\)

\(A=300\)

\(B=\left(2x-5\right)\left(4x^2+10x+25\right)\)

\(B=\left(2x\right)^3-5^3\)

\(B=8x^3-125\)

\(B=8.8-125\)

\(B=64-125\)

\(B=-61\)

\(C=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)

\(C=\left(3x\right)^2+\left(2y\right)^2\)

\(C=9x^2+4y^2\)

\(C=9\left(-1\right)^2+4\left(\dfrac{1}{2}\right)^2\)

\(C=9+4.\dfrac{1}{4}\)

\(C=9+1\)

\(C=10\)

22 tháng 12 2014

\(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\Rightarrow x^2-y^2-y^2-xy=0\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)-y\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x-2y=0\)\(\left(x+y\ne0\right)\)

\(\Rightarrow x=2y\)

Thay vào A tính đc giá trị của A

3 tháng 10 2018

     \(9x^2 +4y^2=20xy\)

\(\Rightarrow9x^2-20xy+4y^2=0\)

\(\Rightarrow9x^2-18xy-2xy+4y^2=0\)

\(\Rightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)

\(\Rightarrow\left(x-2y\right)\left(9x-2y\right)=0\)

\(\Rightarrow9x=2y\) (vì \(x< 2y\Rightarrow x-2y\ne0\) )

\(\Rightarrow\frac{x}{2}=\frac{y}{9}\)

Đặt \(\frac{x}{2}=\frac{y}{9}=t\Rightarrow x=2t,y=9t\)

Ta có: \(A=\frac{3.2t-2.9t}{3.2t+2.9t}=-\frac{12t}{24t}=-\frac{1}{2}\)

Chúc bạn học tốt.