Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Từ \(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)
\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\left(1\right)\)
Mà \(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\left(2\right)\)
Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\) (Đpcm)
Giải:
Ta có: \(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=k\)
+) \(k^2=\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a}{c}\) (1)
+) \(k=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{2011b}{2011c}=\dfrac{a+2011b}{b+2011c}\) ( t/c dãy tỉ số bằng nhau )
\(\Rightarrow k^2=\left(\dfrac{a+2011b}{b+2011c}\right)^2=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}\) (2)
Từ (1), (2) \(\Rightarrow\dfrac{a}{c}=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}\left(đpcm\right)\)
Giải:
Từ hằng đẳng thức: \(\left(a+b\right)^2=a^2+2ab+b\) ta có:
\(VP=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}=\dfrac{a^2+2.2011ab+\left(2011b\right)^2}{b^2+2.2011bc+\left(2011c\right)^2}\)
\(=\dfrac{a^2+2.2011ab+2011^2ac}{ac+2.2011bc+2011^2c^2}\)
\(=\dfrac{a\left(a+2.2011b+2011^2c\right)}{c\left(a+2.2011b+2011^2c\right)}=\dfrac{a}{c}=VT\)
Vậy \(\dfrac{a}{c}=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}\) (Đpcm)
4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)
Suy ra \(x=15k;y=20k;z=24k\)
Thay vào,ta có:
\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
1. Tìm n, biết:
a) \(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)
\(\Rightarrow\left(-2\right)^n.\left(-2\right)^2=\left(-2\right)^5\)
(-2)n + 2 = (-2)5
n + 2 = 5
n = 5 - 2
n = 3.
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow\dfrac{2^3}{2^n}=2\)
\(\Rightarrow\) 2n . 2 = 23
n + 1 = 3
n = 3 - 1
n = 2.
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
2n - 1 = 3
2n = 3 + 1
2n = 4
n = 4 : 2
n = 2.
2. Tính:
a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^2\right]^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{2}\right)^4\)
\(=\left(\dfrac{1}{2}\right)^7\)
\(=\dfrac{1}{128}\)
b) 273 : 93
= (33)3 : (32)3
= 39 : 36
= 33
= 27
c) 1252 : 253
= (53)2 : (52)3
= 56 : 56
= 1
d) \(\dfrac{27^2.8^5}{6^6.32^3}\)
\(=\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{6^6.\left(2^5\right)^3}\)
\(=\dfrac{3^6.2^{15}}{6^6.2^{15}}\)
\(=\dfrac{3^6}{6^6}\)
\(=\dfrac{1}{64}.\)
B2 :
b) 27\(^3\): 9\(^3\)= (27:9)\(^3\)= 3\(^3\)
c) 125\(^2\): 25\(^3\)= 15625 : 15625 = 1
a) Theo bài ra:
c = 1 (1)
a - b = 100 ~> a= 1000+b (2)
Thay (1) và (2) vào A, ta có:
A = 1000+b(b+1) - b(1000+b+1) + 1(1000+b-b)
A = (1000 + b).b + 1000+b - 1000b - \(b^2\) -b + 1000
A= 1000b + \(b^2\) + 1000+b - 1000b - \(b^2 \) - b + 1000
A = (1000b - 1000b) + (\(b^2 - b^2 \))+ (1000 + b - b +1000)
A = 0 + 0 + 0
A = 0
Vậy A = 0