\(x^2\) - 3x + 6 tại x = -3

A. 25

B. 33...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

a)Đang suy nghĩ...

b)\(M\left(x\right)=\left(x^2-3x\right)+\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

24 tháng 4 2019

a) \(12x^{11}-15x^7-6x^5+2018\)

\(=3x^5.\left(4x^6-5x^2-2\right)+2018\)

\(=3x^5.0+2018\)

\(=2018\)

12 tháng 4 2024

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4 2024

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)

 

16 tháng 10 2019

đề bài bị lỗi :(

23 tháng 4 2018

A=(-2/17x3y5).(34/5x2y)

=-4/5x5y6

Câu 1 (4 điểm) :           a) Tính giá trị của biểu thức \(A=(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}):\frac{2018}{2019}\)           b)  Cho biểu thức \(B=75.(1+4+4^2+...+4^{2017}+4^{2018})+25\). CMR B chia hết cho 400.Câu 2 (6 điểm) :           a) Tìm x biết: \(|x-\frac{1}{3}|+\frac{4}{5}=|-3,2+\frac{2}{5}|\)           b) Cho bốn số khác 0 a, b, c,...
Đọc tiếp

Câu 1 (4 điểm) :

           a) Tính giá trị của biểu thức \(A=(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}):\frac{2018}{2019}\)

           b)  Cho biểu thức \(B=75.(1+4+4^2+...+4^{2017}+4^{2018})+25\). CMR B chia hết cho 400.

Câu 2 (6 điểm) :

           a) Tìm x biết: \(|x-\frac{1}{3}|+\frac{4}{5}=|-3,2+\frac{2}{5}|\)

           b) Cho bốn số khác 0 a, b, c, d thỏa mãn điều kiện: \(b^2=a.c, c^2=b.d\) và a=1945, d=2019. Tính giá trị của biểu thức \(M=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

           c) Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{(2x-1)^2+4}+3|4y-1|+2019\)

           d) Tìm các số nguyên x, y, z biết: \(|x-y|+|y-z|+|z-x|=20182019\)

Câu 3 (3điểm) :

           a) Cho hàm số y=f(x) thỏa mãn: \(f(x)+3f(\frac{1}{x})=x^2\) với \(x\ne0\). Tính f(2).

           b) Tìm ba số tự nhiên biết rằng BCNN của chúng bằng 1680, tỉ số của số thứ nhất và số thứ hai là 3:5, tỉ số của số thứ ba và số thứ nhất là 4:7. Tìm ba số đó.

Câu 4 (6 điểm) :

           Cho tam giác ABC (AB<AC) có góc A bằng 60o. Tia phân giác của góc B cắt AC tại D, tia phân giác của góc C cắt AB tại E, BD cắt CE tại O.   

           a) Tính góc BOC

           b) CM OD=OE và BE+CD=BC

            c) Kẻ OH vuông góc với AB (H thuộc AB), kẻ OK vuông góc với AC (K thuộc AC). So sánh OH và OK.

Câu 5 (1 điểm) :

           Cho \(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{n^2-1}{n^2}\) với \(n\in N, n>2\). Chứng tỏ rằng B không là số nguyên.

 

3
19 tháng 1 2019

ít thoi bạn.

bộ bạn viết ko mỏi tay ak.

Nếu cần bài nào ib cho mik giải cho nha.(khác hình vs hàm số gì đó)

19 tháng 1 2019

bạn chép cả đề vậy trả lời bao giờ xong

3 tháng 8 2020

Cảm ơn bạn rất rất nhiều hihi

1 tháng 8 2020

Bài 2b

Thay x = -1; y = 1 vào N ta đc:

\(N=\left(-1\right).1+\left(-1\right)^2.1^2+\left(-1\right)^3.1^3+\left(-1\right)^4.1^4+\left(-1\right)^5.1^5\)

\(=\left(-1\right)+1+\left(-1\right)+1+\left(-1\right)\)

\(=-1\)