K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

Ta có: \(\left(x-1\right)^{20}\ge0\forall x\)

           \(\left(y+2\right)^{30}\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\)

Mà \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)

\(\Rightarrow\left(x-1\right)^{20}=\left(y+2\right)^{30}=0\)

\(\Rightarrow x-1=y+2=0\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay x = 1 và y = -2 vào biểu thức A ta được:

\(A=2.1^5-5.\left(-2\right)^3+4=-76\)

Vậy A = -76 tại x = 1 và y = -2.

9 tháng 6 2021

Ta có : \(\hept{\begin{cases}\left(x-1\right)^{20}\ge0\forall x\\\left(y+2\right)^{30}\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\forall x;y\)

Dựa vào đề bài ta có \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Khi đó A = 2.15 - 5.(-2)3 + 4 = 2 + 40 + 4 = 46

1 tháng 3 2020

Vì |2x-y| \(\ge0\)\(\forall x,y\)

\(\left(y+2\right)^{2018}\ge0\forall y\)

\(\Rightarrow\left|2x-y\right|+\left(y+2\right)^{2018}\ge0\)

Dấu = xảy ra

\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)(Thay vào C ta đc )

\(C=2\cdot\left(-1\right)^{2019}-5\left(-2\right)^3+2019\)=2057

Vậy .......

1 tháng 3 2020

Vì /2x-y/ \(\ge\)0 với mọi x,y,

(y + 2)2018\(\ge\)0 với mọi y

suy ra \(|2x-y|\)+ (y + 2)2018\(\ge\)0 với mọi x,y   (1)

mà suy ra \(|2x-y|\)+ (y + 2)2018​ =0    (2)

Từ (1) và (2) suy ra \(|2x-y|\)=0 và (y + 2)2018​ = 0

suy ra 2x=y và y=-2

suy ra x=-1 và y=-2

Như vậy C= 2. ( -1)2019 - 5 (-2) 3 + 2019 = -2 +40 + 2019 = 2057

 
23 tháng 12 2016

Ta có:

\(\left|x-1\right|+\left(y+2\right)^{20}=0\)

\(\Rightarrow\left|x-1\right|=0\)\(\left(y+2\right)^{20}=0\)

+) \(\left|x-1\right|=0\Rightarrow x-1=0\Rightarrow x=1\)

+) \(\left(y+2\right)^{20}=0\Rightarrow y+2=0\Rightarrow y=-2\)

\(\Rightarrow C=2x^5-5y^3+2015\)

\(=2.1^5-5.\left(-2\right)^3+2015\)

\(=2-\left(-40\right)+2015\)

\(=2057\)

Vậy C = 2057

23 tháng 12 2016

Cảm ơn bạn nhiều lắm vui

10 tháng 2 2020

 (x-1)200+(y+2)300=0 

(x-1)^200 > 0 ; (y+2)^300>0

=> (x-1)^200 = 0 và (y + 2)^300 = 0

=> x - 1 = 0 và y + 2 = 0

=> x = 1 và y = - 2

thay vào rồi tính như bình thường thôi

10 tháng 2 2020

Vì \(\left(x-1\right)^{200}\ge0\forall x\)\(\left(y+2\right)^{300}\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)

mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:

\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)

\(=2+40+4=46\)

11 tháng 3 2019

Thay x = -1, y = - 4 vào biểu thức -2x2 + xy2, ta có:

       -2.(-1)2 + (-1) .(-4)2 = -2.1 + -1 . 16 = -2 - 16 = -18

Vậy giá trị của biểu thức -2x2 + xy2 tại x = -1; y = -4 là -18

11 tháng 3 2019

Tại x=-1;y=-4 nên ta có:

\(-2\left(-1\right)^2+\left(-1\right)\left(-4\right)^2\)

=\(-2+\left(-16\right)\)

=-18

30 tháng 4 2021

P = 4x4 + 7x2y2 + 3y4 + 5y2 

= (4x4 + 4x2y2) + (3x2y2 + 3y4) + 5y2

= 4x2(x2 + y2) + 3y2(x2 + y2) + 5y2

= (4x2 + 3y2)(x2 + y2) + 5y2

= (4x2 + 3y2).5 + 5y2 (Vì x2 + y2 = 5)

= 5(4x2 + 3y2 + y2)

= 5(4x2 + 4y2)

= 5.4.(x2 + y2) = 5.4.5 = 100