Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

có A=\(5xy^3\)+\(4x^2y^2\)-\(x^3y\)+2015=xy(\(5y^2+5xy-x^2\)) +2015=xy(\(5y^2+5xy-xy-x^2\)) +2015
=xy\(\left(\left(5y^2+5xy\right)-\left(xy+x^2\right)\right)\)=xy(5y(y+x)-x(x+y)) +2015 =xy(5y-x)(x+y)+2015=2015
dễ vậy thôi hc tốt nhé em!à nhớ k nhé thanks!
thay Y bang - X vao bieu thuc A thi ban co duoc phuong trinh:
A=-5xX^4+4xX^4+X^4+2015
A=0

Ta có:\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)+15xy\left(y-x\right)+1\)Thế \(x-y=0\) vào C ta được:
\(C=0+0+0+1\)
C = 0

thay x = -1 , y = -1 , z = -1 vào N ta có
N = 1 + (-1) + 1 + ... + 1 + (-1)
= [1 + (-1)] + [1 + (-1) ] + ... + [1 + (-1)]
= 0 + 0 + ... + 0
= 0

Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)
Quy đồng : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) và \(2x-3y+z=6\)
Áp dung tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\)
\(\Rightarrow\begin{cases}\frac{x}{9}=3\Rightarrow x=3.9=27\\\frac{x}{12}=3\Rightarrow x=3.12=36\\\frac{x}{20}=3\Rightarrow x=3.20=60\end{cases}\)
Vậy .......................
Ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}.\frac{1}{3}=\frac{y}{4}.\frac{1}{3}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{3}.\frac{1}{4}=\frac{z}{5}.\frac{1}{4}\Rightarrow\frac{y}{12}=\frac{z}{20}\left(2\right)\)
Từ (1) và (2); ta được:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
\(\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\Rightarrow x=3.9=27\)
\(\Rightarrow y=3.12=36\)
\(\Rightarrow z=3.20=60\)

thay x = -1 , y = -1 , z = -1 và N ta có
N = 1 + (-1) + 1 + ... + 1 + (-1)
= [1 + (-1)] + [1 + (-1) ] + ... + [1 + (-1)]
= 0 + 0 + ... + 0
= 0
=(-1).(-1)2.(-1)^3+(-1)^2.(-1)^3.(-1)^4+(-1)^3.(-1)^4.(-1)^5+...+(-1)^2014.(-1)^2015.(-1)^2016
=(-1).1.(-1)+1.(-1).1+(-1).1.(-1)+...+1.(-1).1
=1+(-1)+1+...+(-1)
=0+0+..+0= 0


Vì \(\left|x-2\right|\ge0;\sqrt{\left(y+1\right)^{2015}}\ge0\) \(\forall\) \(x\)
\(\Rightarrow\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}=0\)
\(\Rightarrow\left|x-2\right|=0;\sqrt{\left(y+1\right)^{2015}}=0\)
\(\Rightarrow x-2=0;y+1=0\)
\(\Rightarrow x=2;y=-1\) Thay vào C ta được :
\(C=2.\left(-1\right)^3+15.2^3+2015=-2+120+2015=2133\)