Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=\frac{4x^2-2}{2x^2+1}=\frac{4x^2+2-4}{2x^2+1}=\frac{2.\left(2x^2+1\right)-4}{2x^2+1}=2-\frac{4}{2x^2+1}\)
Để S nhận giá trị nhỏ nhất thì \(\frac{4}{2x^2+1}\) lớn khi 2x2 + 1 nhỏ nhất
Mà 2x2 ≥ 0 ∀ x => 2x2 + 1 ≥ 1 ∀ x
=> \(S=2-\frac{4}{2x^2+1}\le\frac{4}{1}=-2\)
Dấu "=" xảy ra <=> 2x2 = 0 <=> x2 = 0 <=> x = 0
\(A=3x^3-6x^2+2\left|x\right|+7\) với \(x=-\frac{1}{3}\)
Thay \(x=-\frac{1}{3}\) vào A, ta có:
\(A=3.\left(-\frac{1}{3}\right)^3-6.\left(-\frac{1}{3}\right)^2+2.\left|-\frac{1}{3}\right|+7\)
\(A=\left(-\frac{1}{9}\right)-\frac{2}{3}+\frac{2}{3}+7\)
\(A=\frac{62}{9}\)
\(B=4\left|x\right|-2\left|y\right|\) với \(x=\frac{1}{4};y=-2\)
\(B=4.\left|\frac{1}{4}\right|-2.\left|-2\right|\)
\(B=1-4\)
\(B=-3\)
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
\(\frac{-4}{\left(2x-3\right)^2+5}\)
Ta thấy \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5>0\)
\(\Rightarrow\frac{-4}{\left(2x-3\right)^2+5}\ge\frac{-4}{0+5}=-\frac{4}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
:333
Tính giá trị của biểu thức sau:
\(\frac{\left(y+2\right)^3}{2y}+\frac{y}{y+2}\) với \(y=\frac{3}{2}\)
Thay \(y=\frac{3}{2}\)vào biểu thức ta có :
\(\frac{\left(\frac{3}{2}+2\right)^3}{2\cdot\frac{3}{2}}+\frac{\frac{3}{2}}{\frac{3}{2}+2}\)
\(=\frac{\left(\frac{7}{2}\right)^3}{3}+\frac{\frac{3}{2}}{\frac{7}{2}}\)
\(=\frac{343}{24}+\frac{3}{7}\)
\(=\frac{2473}{168}\)
Học tốt~
Trả lời:
Thay \(y=\frac{3}{2}\) vào biểu thức trên, ta được:
\(\frac{\left(\frac{3}{2}+2\right)^2}{2\cdot\frac{3}{2}}+\frac{\frac{3}{2}}{\frac{3}{2}+2}\)
\(=\frac{\left(\frac{7}{2}\right)^2}{\frac{6}{2}}+\frac{\frac{3}{2}}{\frac{7}{2}}\)
\(=\frac{\frac{49}{4}}{3}+\left(\frac{3}{2}\cdot\frac{2}{7}\right)\)
\(=\frac{49}{12}+\frac{3}{7}\)
\(=\frac{379}{84}\)
_học tốt_
a) Thay \(x=1\)vào đa thức P ta được:
\(P=3.1^3+4.1^2-8.1+1=3+4-8+1=0\)
Vậy \(x=1\)là nghiệm của đa thức
b) \(P=3x^3+4x^2-8x+1=\left(3x^3+3x^2-9x\right)+\left(x^2+x-3\right)+4\)
\(=3x\left(x^2+x-3\right)+\left(x^2+x-3\right)+4=\left(x^2+x-3\right)\left(3x+1\right)+4\)
Thay \(x^2+x-3=0\)vào đa thức P ta được : \(P=4\)
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
− 1 2 − 3 2 + − 2 3 = − 2 + 2 3 = − 4 3 = 4 3