Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1\frac{6}{41}.\left(\frac{12+\frac{12}{19}+\frac{12}{37}-\frac{12}{53}}{3+\frac{3}{19}+\frac{3}{37}-\frac{3}{53}}\right):\left(\frac{4+\frac{4}{19}+\frac{4}{37}-\frac{4}{53}}{5+\frac{5}{19}+\frac{5}{37}-\frac{5}{53}}\right).\frac{124242423}{237373735}\)
\(B=1\frac{6}{41}.\left[\frac{12\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{3\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}\right]:\left[\frac{4\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{5\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}\right].\frac{124242423}{237373735}\)
\(B=1\frac{6}{41}\left(\frac{12}{3}.\frac{5}{4}\right).\frac{124242423}{237373735}\)
\(B=1\frac{6}{41}.5.\frac{123}{235}\)
\(B=\frac{47.5.123}{41.235}=\frac{47.5.41.3}{41.5.47}=3\)
B=\(1\frac{6}{41}.\left(\frac{12+\frac{12}{19}+\frac{12}{37}-\frac{12}{53}}{3+\frac{3}{19}+\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{19}+\frac{4}{37}-\frac{4}{53}}{5+\frac{5}{19}+\frac{5}{37}-\frac{5}{53}}\right).\frac{124242423}{237373735}\)
B=\(\frac{47}{41}.\left(\frac{12.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{3.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}:\frac{4.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{5.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}\right).\frac{123.1010101}{235.1010101}\)
B=\(\frac{47}{41}.\left(\frac{12}{3}:\frac{4}{5}\right).\frac{123}{235}=\frac{47}{41}.\left(\frac{12}{3}.\frac{5}{4}\right).\frac{123}{235}\)
B=\(\frac{47}{41}.\frac{15}{3}.\frac{123}{235}=\frac{47.5.3.41.3}{41.3.5.47}=3\)
Vậy B=3
Chúc bn học tốt
\(P=-1\frac{1}{5}.\frac{4\left(3\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
=> \(P=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
=> \(P=-1\frac{1}{5}.4:\frac{4}{5}\)
=> \(P=-\frac{6}{5}.4.\frac{5}{4}=-6\)
A = \(-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
A = \(-1\frac{1}{5}.\)4 : \(\frac{4.\left(1-\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5.\left(1-\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
A = \(-1\frac{1}{5}.4\): \(\frac{4}{5}\)= \(\frac{-6}{5}\).4. \(\frac{5}{4}\)
A = \(\frac{-24}{5}.\frac{5}{4}\)=\(\frac{\left(-6\right).1}{1.1}\)= -6.
\(A=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
\(=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
\(=-1\frac{1}{5}.\frac{4}{1}:\frac{4}{5}\)
\(=-1\frac{1}{5}.\frac{4}{1}.\frac{5}{4}\)
\(=-1\)
A = -4/5x(1/2+1/3+1/4)= -4/5x1 = -4/5
B = 6/19 x ( 3/4+4/3+-1/2)= 6/19x 19 = 6
C = 2002/2003x(3/4+5/6-19/12)=2003/2002x0=0
\(\frac{5}{6}.\frac{4}{19}+\frac{-7}{12}.\frac{4}{19}-\frac{40}{57}\)
\(=\frac{4}{19}.\left(\frac{5}{6}+\frac{-7}{12}\right)-\frac{40}{57}\)
\(=\frac{4}{19}.\frac{1}{4}-\frac{40}{57}\)
\(=\frac{1}{19}-\frac{40}{57}\)
\(=\frac{43}{57}\)
\(M=\frac{\frac{3}{19}+\frac{3}{5}-\frac{3}{2015}}{\frac{4}{19}-\frac{4}{2015}+\frac{4}{5}}=\frac{\frac{3}{19}+\frac{3}{5}-\frac{3}{2015}}{\frac{4}{19}+\frac{4}{5}-\frac{4}{2015}}\)
\(\frac{3\left(\frac{1}{19}+\frac{1}{5}-\frac{1}{2015}\right)}{4\left(\frac{1}{19}+\frac{1}{5}-\frac{1}{2015}\right)}=\frac{3}{4}\)
M=\(\frac{\frac{3}{19}+\frac{3}{5}-\frac{3}{2015}}{\frac{4}{19}-\frac{4}{2015}+\frac{4}{5}}=\frac{3.\left(\frac{1}{19}+\frac{1}{5}-\frac{1}{2015}\right)}{4.\left(\frac{1}{19}+\frac{1}{5}-\frac{1}{2015}\right)}\)=\(\frac{3}{4}\)