Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo bài ta có :
\(\dfrac{a}{b}=\dfrac{10}{3}\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{3}\)
Đặt :
\(\dfrac{a}{10}=\dfrac{b}{3}=k\left(k\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=10k\\b=3k\end{matrix}\right.\)
Ta có :
\(Q=\dfrac{3a-2b}{a-3b}=\dfrac{3.10k-2.3k}{10k-3.3k}=\dfrac{30k-6k}{10k-9k}=\dfrac{24k}{1k}=24\)
Vậy ...........
a-b=3=>a=b+3 Thay a=b+3 vào B
\(\Rightarrow B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\)
\(\Rightarrow B=1-\dfrac{4b-b+12}{3b+9+3}=1-1=0\)
đặt b=3.a thì E=\(\frac{3a+9a}{4a-12a}=\frac{12a}{-8a}=-\frac{3}{2}\)
a-8\b-5 - 4a-b\3a+3
= (a-3)-5 \ b-5 - 3a+(a-b) \ 3a+3
= b-5 \ b-5 - 3a+3\3a+3
= 1-1
=0
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a -b = 3 => a = 3 + b thay vào Biểu thức M ta có :
M = \(\frac{3+b-8}{b-5}-\frac{4\left(b+3\right)-b}{3\left(b+3\right)+3}=\frac{b-5}{b-5}-\frac{4b+12-b}{3b+9+3}=1-\frac{3b+12}{3b+12}=1-1=0\)
Đúng cho mìn nha