\(\frac{99}{98}\) + \(\frac{96}{97}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

\(\frac{99}{98}+\frac{96}{97}+\frac{1}{97.98}=\frac{99}{98}+\frac{96}{97}+\frac{1}{97}-\frac{1}{98}=\left(\frac{99}{98}-\frac{1}{98}\right)+\left(\frac{1}{97}+\frac{96}{97}\right)=1+1=2\)

28 tháng 5 2017

= 2

mk bấm máy tính

đúng 10000000000000000000000000000000000000000000000000000000000000000000000%

Ta có: 1+1/2 +1/3 +...+1/98 

=(1+1/98 )+(1/2 +1/97 )+(1/3 +1/96 )+...+(1/49 +1/50 )

=99/1.98 +99/2.97 +99/3.96 +...+99/49.50 

=99(1/1.98 +1/2.97 +1/3.96 +...+1/49.50 )

⇒A=(1+1/2 +1/3 +...+1/98 ).2.3.4....98

=99(1/1.98 +1/2.97 +1/3.96 +...+1/49.50 ).2.3.4....98chia hết cho 99 (đpcm)

26 tháng 3 2017

use máy tính casio fx 570VN ta đc   x= -100

18 tháng 4 2018

 1x100/99x99/98x98/97x.....x3/2x2

 1x100

 100

18 tháng 4 2018

\(1:\frac{99}{100}:\frac{98}{99}:\frac{97}{98}:.........:\frac{2}{3}:\frac{1}{2}\)

\(=1.\frac{100}{99}.\frac{99}{98}.\frac{98}{97}......\frac{3}{2}.\frac{2}{1}\)

\(=\frac{1.100.99.98....3.2}{99.98.97......2.1}\)

\(=100\)

đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

 \(\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}=\frac{100-1}{1}+\frac{100-2}{2}+...+\frac{100-99}{99}\)

\(=\frac{100}{1}-1+\frac{100}{2}-1+...+\frac{100}{99}-1=\left(\frac{100}{1}+\frac{100}{2}+...+\frac{100}{99}\right)-\left(1+1+...+1\right)\)

\(100+\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}\right)-99=1+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}}=\frac{B}{100B}=\frac{1}{100}\)

9 tháng 6 2016

a) \(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}.1\frac{1}{24}.........1\frac{1}{99}\)

\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}......\frac{100}{99}\)

\(=\frac{\left(2.2\right).\left(3.3\right).\left(4.4\right).\left(5.5\right)....\left(10.10\right)}{\left(1.3\right).\left(2.4\right).\left(3.5\right).\left(4.6\right).....\left(9.11\right)}\)

\(=\frac{\left(2.3.4.5...10\right).\left(23.4.5....10\right)}{\left(1.2.3.4...9\right).\left(3.4.5.6....11\right)}=\frac{10}{1}.\frac{2}{11}=\frac{20}{11}\)

9 tháng 6 2016

b) \(\frac{99}{98}-\frac{98}{97}+\frac{1}{97.98}=\frac{99}{98}-\frac{98}{97}+\frac{1}{97}-\frac{1}{98}=\left(\frac{99}{98}-\frac{1}{98}\right)-\left(\frac{98}{97}-\frac{1}{97}\right)\)

\(=\frac{98}{98}-\frac{97}{97}=1-1=0\)

đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

\(\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}=\frac{100-1}{1}+\frac{100-2}{2}+...+\frac{100-99}{99}=\frac{100}{1}-1+\frac{100}{2}-1+...+\frac{100}{99}-1\)

\(=\left(\frac{100}{1}+\frac{100}{2}+...+\frac{100}{99}\right)-\left(1+1+...+1\right)=100+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)-99\)

\(=1+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=100B\)

\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}}=\frac{B}{100B}=\frac{1}{100}\)

16 tháng 5 2015

Bài của Intelligent, bạn nguyen thieu cong thanh vừa làm rồi ! Bạn kéo xuống mà xem nha !