Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=2013.(1+
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)
B=2013(\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2012.2013}\)
B=2013.2(\(1\frac{1}{2013}=2013.2.\frac{2012}{2013}=4024\)
\(\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\)
\(=2013+\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)-\left(1+1+...+1\right)\)
\(=2013+\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}-2012\)
\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+1\)
\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}\)
\(=2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
\(\Rightarrow A=\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}=2014\)
Xét mẫu số của A :
\(\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\) \(=\left(1+1+1+...+1\right)+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\)
\(=\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1\)\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}\)\(=2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
Mẫu số gấp 2014 lần tử số nên A = \(\frac{1}{2014}\)