Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\sqrt[4]{17+12\sqrt{2}}-\sqrt{2}\)
= \(\sqrt[4]{9+2×3×2\sqrt{2}+8}-\sqrt{2}\)
= \(\sqrt{3+2\sqrt{2}}-\sqrt{2}\)
= \(\sqrt{2}+1-\sqrt{2}\)= 1
Mấy câu còn lại giải tương tự
Bài 1 bạn nhóm , trục như thường nhé :D
Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)
\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)
\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)
\(D=-\sqrt{6}\left(do:D< 0\right)\)
1)
a. \(\sqrt{\dfrac{25}{7}}.\sqrt{\dfrac{7}{9}}=\sqrt{\dfrac{25.7}{7.9}}=\sqrt{\dfrac{25}{9}}=\dfrac{5}{3}\)
b. \(\left(\sqrt{\dfrac{9}{2}}+\sqrt{\dfrac{1}{2}}-\sqrt{2}\right).\sqrt{2}=3+1-2=2\)
c. \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right).\sqrt{6}=4-12+10=2\)
d. \(\left(\sqrt{\dfrac{2}{3}}-\sqrt{\dfrac{3}{2}}\right)^2=\dfrac{2}{3}+\dfrac{3}{2}-2\sqrt{\dfrac{2}{3}.\dfrac{3}{2}}=\dfrac{1}{6}\)
2)
a. \(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
b. \(\sqrt{8-2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\)
c. \(1+\sqrt{6-2\sqrt{5}}=1+\sqrt{5-2\sqrt{5}+1}=1-\sqrt{\left(\sqrt{5}-1\right)^2}=1-\sqrt{5}+1=2-\sqrt{5}\)
d. \(\sqrt{7-2\sqrt{10}}+\sqrt{2}=\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}+\sqrt{2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{2}=\sqrt{5}-\sqrt{2}+\sqrt{2}=\sqrt{5}\)
3. \(a.A=x^2+2x+16=\left(\sqrt{2}-1\right)^2+2.\left(\sqrt{2}-1\right)+16=2-2\sqrt{2}+1+2\sqrt{2}-2+16=17\)
\(b.B=x^2+12x-14=\left(5\sqrt{2}-6\right)^2+12.\left(5\sqrt{2}-6\right)-14=50+36-60\sqrt{2}+60\sqrt{2}-72-14=0\)
Help me nha @Phùng Khánh Linh@Nhã Doanh@Liana@Yukru Cảm ơn trước nhé
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
a) \(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2\sqrt{3}+2-\sqrt{3}\)
\(=\left(2\sqrt{3}-\sqrt{3}\right)+2\)
\(=\sqrt{3}+2\)
b) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(=\frac{1+\sqrt{5}}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{1+\sqrt{5}}\)
\(=\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}\)
\(=\frac{\left(\sqrt{5}+1\right)^2+\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}\)
\(=\frac{12}{4}=3\)
c) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
\(=\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+\frac{7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{14}{1}=14\)
a, c.Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
a)
\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1-\sqrt{5}+1\\ =2\)
b) Sửa đề:
\(\sqrt{7+2\sqrt{6}}+\sqrt{7-2\sqrt{6}}-2\sqrt{6}\\ =\sqrt{\left(\sqrt{6}+1\right)^2}+\sqrt{\left(\sqrt{6}-1\right)^2}-2\sqrt{6}\\ =\sqrt{6}+1+\sqrt{6}-1-2\sqrt{6}\\ =0\)
c)
\(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}-2\sqrt{5}\\ =\sqrt{9+2\sqrt{20}}+\sqrt{9-2\sqrt{20}}-2\sqrt{5}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}-2\sqrt{5}\\ =\sqrt{5}+2+\sqrt{5}-2-2\sqrt{5}\\ =0\)
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
a, Đặt A = \(\sqrt{2+\sqrt{3}}\)
\(\sqrt{2}A=\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Rightarrow A=\frac{\sqrt{3}+1}{\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{2}\)
b, \(\sqrt{9+4\sqrt{5}}=\sqrt{5+4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}+2\)
c, \(\sqrt{7+\sqrt{24}}=\sqrt{7+2\sqrt{6}}=\sqrt{6+2\sqrt{6}+1}=\sqrt{\left(\sqrt{6}+1\right)^2}=\sqrt{6}+1\)