Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+y+z=0
Suy ra: x+y=-z; y+z=-x; z+x=-y
ta có: \(\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{z}{x}+1\right)\)\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
\(=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}\)
\(=-1\)
\(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}=\frac{x+y+z}{z}-1+\frac{x+y+z}{y}-1+\frac{x+y+z}{x}-1\)
\(=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=0-3=-3\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\\\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\\\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\end{cases}}\) (*)
Ta có: \(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}\)
\(=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{x}{y}+\frac{y}{x}+\frac{z}{x}\)
\(=\left(\frac{x}{z}+\frac{x}{y}\right)+\left(\frac{y}{x}+\frac{y}{z}\right)+\left(\frac{z}{x}+\frac{z}{y}\right)\)
\(=x\left(\frac{1}{z}+\frac{1}{y}\right)+y\left(\frac{1}{x}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)
Thay (*) vào,ta có : \(A=x.\left(\frac{-1}{x}\right)+y.\left(-\frac{1}{y}\right)+z.\left(-\frac{1}{z}\right)=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)
Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)
=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)
=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)
\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)
Từ (1) và (2) suy ra
\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)
=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)
à thêm cái này nữa. Sorry viết thiếu
Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)
lúc đó \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)
bạn kéo xuống dưới xem bài của bạn Quang Huy Thịnh đi nãy mik vừa giải một bài tương tự như zị
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)
\(\Leftrightarrow\frac{yz+xz+xy}{xyz}=0\Leftrightarrow yz+xz+xy=0\)
\(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\frac{xy\left(x+y\right)}{xyz}+\frac{xz\left(x+z\right)}{xyz}+\frac{yz\left(y+z\right)}{xyz}\)
\(=\frac{x^2y+xy^2}{xyz}+\frac{x^2z+xz^2}{xyz}+\frac{y^2z+yz^2}{xyz}=\frac{x^2y+xy^2+x^2z+xz^2+y^2z+yz^2}{xyz}\)
\(=\frac{\left(x^2y+x^2z+xyz\right)+\left(xy^2+y^2z+xyz\right)+\left(xz^2+yz^2+xyz\right)-3xyz}{xyz}\)
\(=\frac{x\left(xy+xz+yz\right)+y\left(xy+yz+xz\right)+z\left(xz+yz+xy\right)-3xyz}{xyz}\)
\(=\frac{\left(x+y+z\right)\left(xz+yz+xy\right)-3xyz}{xyz}=\frac{\left(x+y+z\right).0-3xyz}{xyz}=\frac{-3xyz}{xyz}-3\)