K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

Ta có: \(x-y=7\)

\(\Leftrightarrow\left(x-y\right)^2=7^2\)

\(\Leftrightarrow x^2-2xy+y^2=49\)

\(\Leftrightarrow x^2+2xy+y^2-4xy=49\)

\(\Leftrightarrow\left(x+y\right)^2-4\cdot60=49\) (vì \(xy=60\))

\(\Leftrightarrow\left(x+y\right)^2=49+240\)

\(\Leftrightarrow\left(x+y\right)^2=289\)

\(\Rightarrow x+y=17\) (vì \(x>y>0\))

Mặt khác: \(x^2-y^2\)

\(=\left(x-y\right)\left(x+y\right)\)

\(=7\cdot17\) (vì \(x-y=7;x+y=17\))

\(=119\)

#Urushi

5 tháng 9 2023

Ta có: 

\(x-y=7\)

\(\Leftrightarrow y=x-7\) (1)

Mà: \(xy=60\) (2)

Thay (1) vào (2) ta có: 

\(x\cdot\left(x-7\right)=60\) (ĐK: \(x>y>0\))

\(\Leftrightarrow x^2-7x=60\)

\(\Leftrightarrow x^2-7x-60=0\)

\(\Leftrightarrow x^2+5x-12x-60=0\)

\(\Leftrightarrow x\left(x+5\right)-12\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-12\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-12=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=12\left(tm\right)\\x=-5\left(ktm\right)\end{matrix}\right.\)

Ta có: \(x=12\)

\(\Leftrightarrow y=12-7=5\)

Giá trị của bt là:

\(12^2-5^2=144-25=119\)

 

3 tháng 7 2018

+)Ta có: x2+y2=169 (câu a) 

<=> (x+y)2-2xy=169

<=>(x+y)2=169+2xy=169+2.60=289

<=>x+y=17

=>\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=7.17=119\)

+) x2+y2=169 

<=>(x2+y2)2=1692

<=>x4+2x2y2+y4=28561

<=>x4+y4=28561-2(xy)2=28561-2.602=28561-7200=21361

3 tháng 7 2018

Ta có:\(\left(x-y\right)^2+2xy=x^2-2xy+y^2+2xy=x^2+y^2\)

\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy\)

\(=7^2+2.60=49+120=169\)

3 tháng 7 2018

\(A=\left(x-y\right)\left(x+y\right)=7\left(x+y\right)\)

Có \(\left(x-y\right)^2=49\)

\(\Leftrightarrow x^2+y^2-2xy=49\)

\(\Leftrightarrow\left(x^2+y^2+2xy\right)-4xy=49\)

\(\Leftrightarrow\left(x+y\right)^2=289\)

\(\Leftrightarrow x+y=17\)

\(\Rightarrow A=7.17=119\)

Vậy ....

30 tháng 10 2016

x - y = 7 => y = x - 7

=> x(x - 7) = 60

     x2 - 7x + 12,25 = 72,25

   (x - 3,5)2  = 72,25 mà x > 0 => x - 3,5 > -3,5

=> x - 3,5 = 8,5 => x = 12 => y = 60 : 12 = 5 => P = 124 - 54 = 20111

30 tháng 10 2016

cảm ơn bạn! bạn có thể trả lời câu hỏi nữa mk vừa đăng lên ko

a)Ta có:\(x-y=2\Rightarrow\left(x-y\right)^2=4\Rightarrow\left(x^2+y^2\right)-2xy=4\Rightarrow4-2xy=4\Rightarrow2xy=0\Rightarrow xy=0\)

Khi đó ta có:\(x^5y=xy^5=xy\left(x^4-y^4\right)=0\)

3 tháng 7 2018

\(C=x^2-y^2\)

Tương tự câu \(A=x^2+y^2\)

\(D=x^4+y^4\)

Thay x + y = 17; x.y = 60 vào \(\left(x+y\right)^2=x^2+2xy+y^2\):

172 = x2 + 2.60 + y2

289 = x2 + 120 + y2

\(\Leftrightarrow x^2+y^2=169\)

Lại có:

\(\left(x^2+y^2\right)^2=x^4+y^4+2x^2y^2\)

\(\left(x^2+y^2\right)^2=x^4+y^4+\left(2xy\right)^2\)

Thay \(x^2+y^2=169;x.y=60\)vào biểu thức trên:

169= x+ y+ 2 . 602

\(\Leftrightarrow x^4+y^4=28561-7200\)

\(\Leftrightarrow x^4+y^4=21361\)

21 tháng 11 2017

Ta có :\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2=10xy\)

\(\Rightarrow M^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\frac{10xy-6xy}{10xy+6xy}=\frac{4xy}{16xy}=\frac{1}{4}\)

Vậy M=\(\frac{1}{4}\)

27 tháng 3 2017

\(P=\dfrac{x-y}{x+y}\)

=> \(P^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}\) (*)

Thay x2 + y2 = \(\dfrac{50}{7}xy\) vào (*), ta có:

\(P^2=\dfrac{\dfrac{50}{7}xy-2xy}{\dfrac{50}{7}xy+2xy}=\dfrac{\dfrac{36}{7}xy}{\dfrac{64}{7}xy}=\dfrac{9}{16}\)

=> \(P=\sqrt{\dfrac{9}{16}}=\sqrt{\left(\pm\dfrac{3}{4}\right)^2}=\pm\dfrac{3}{4}\)

mà y > x > 0

=> P = 0,75

23 tháng 5 2017

Phương An:hình như bạn bị nhầm thì phải

y>x> 0 => x-y < 0 và x+y > 0 => P < 0 chứ bạn

nếu bình luận thì tag tên mk vào nhé !

4 tháng 3 2020

Cô Nguyễn Linh Chi : Cho e hỏi là bài này không cần chia, mà ta chỉ cần chuyển vế,phân tích đa thức thành nhân tử rồi thay vào để tính biểu thức A có được không ạ ??

Khi đó ta có là : \(\hept{\begin{cases}x=y\\2018x=-2019y\end{cases}}\)

Rồi nhận xét loại đc TH \(2018x=-2019y\) do x,y không cùng > 0

Khi đó có : \(A=\frac{2018x+x}{2019x-2018x}=2019\)

Em thấy dễ dàng hơn cô ạ !!

4 tháng 3 2020

\(2018x^2+xy=2019y^2\)

chia cả hai vế cho y^2 ta có:

\(2018.\left(\frac{x}{y}\right)^2+\frac{x}{y}-2019=0\)

Đặt: \(t=\frac{x}{y}>0\)ta có: \(2018t^2+t-2019=0\Leftrightarrow2018t^2-2018t+2019t-2019=0\)

<=> \(2018t\left(t-1\right)+2019\left(t-1\right)=0\)

<=> \(\left(t-1\right)\left(2018t+2019\right)=0\)

<=> \(\orbr{\begin{cases}t-1=0\\2018t+2019=0\end{cases}}\)

<=> \(\orbr{\begin{cases}t=1\left(tm\right)\\t=-\frac{2019}{2018}\left(loai\right)\end{cases}}\)

Ta có: \(A=\frac{2018x+y}{2019x-2018y}=\frac{2018.\frac{x}{y}+1}{2019.\frac{x}{y}-2018}=\frac{2018t+1}{2019t-2018}=\frac{2018+1}{2019-2018}=2019\)