K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

Thay x = 1 và y = -2 ta có

12 -2.1.(-2) - (-2)2 + 4.1 .(-2)

= 1 - 2.1. (-2) - 4 + 4.1.(-2)

= 1 - (-4) - 4 + (-8)

= -7

12 tháng 5 2022

`x^2 - 2xy - y^2 + 4xy`

`= x^2 + ( 4xy-2xy)-y^2`

`= x^2 + 2xy -y^2` `(***)`

Thay `x=1;y=2` vào `(***)` được `:`

`1^2 + 2*1*(-2) - (-2)^2`

`= -7` 

 

13 tháng 10 2021
Lấy 1 -1 2
9 tháng 3 2022

1) A=1/8; 2) B=9472; 3) 0 và 10.

1: \(A=2x^3y^4-5x\cdot x^2y^4+xy^2\cdot x^2y^2=-2x^3y^4=-2\cdot\left(-1\right)^3\cdot\dfrac{1}{16}=\dfrac{1}{8}\)

2: \(B=9x^4y^6\cdot\left(-4xy\right)+19x^3y^5\cdot\left(-2\right)x^2y^2\)

\(=-36x^5y^7-38x^5y^7\)

\(=-74x^5y^7=-74\cdot\left(-1\right)^5\cdot2^7=9472\)

3: \(f\left(-1\right)=3\cdot\left(-1\right)^4+7\cdot\left(-1\right)^3+4\cdot\left(-1\right)^2-2\cdot\left(-1\right)-2=0\)

\(f\left(1\right)=3+7+4-2-2=10\)

Bài làm

Ta có: P = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017

          P = x3 + x2y - 2x2 - xy - y2 + 2y + y + x + 2017

          P = ( x3 + x2y − 2x2 ) − ( xy + y2 − 2y ) + ( x + y − 2 ) + 2019

          P = x2( x + y − 2 ) − y( x + y − 2 ) + ( x + y − 2 ) + 2019

Mà x + y = 2 => x + y - 2 = 0

Thay x + y - 2 = 0 và đa thức P, ta được:

P = x. 0 - y . 0 + 0 + 2019

P = 0 - 0 + 0 + 2019

P = 2019

Vậy P = 2019 tại x + y = 2

# Học tốt #

30 tháng 10 2019

\(P=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(P=\left(x^3+x^2y-2x^2\right)+\left(-xy-y^2+2y\right)+\left(x+y-2\right)+2019\)

\(P=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(P=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)

\(P=0+2019=2019\)

18 tháng 3 2016

a)y2 = 7 => y = \(\sqrt{7}hoặc-\sqrt{7}\)

Nếu y = \(\sqrt{7}\) thì :

x2y3 = 5 . y.y

x2y3 = 5.7.\(\sqrt{7}\) = 35\(\sqrt{7}\)

Nếu y = -\(\sqrt{7}\)  thì :

x2y3 = 5.7. (-\(\sqrt{7}\)) = -35\(\sqrt{7}\)

b) x2y= 5.7 = 35

x6y6 = (x2y2)3 = 353 = 42875

c) làm tương tự câu (a).  Chia x làm 2 trường hợp bằng căng 5 hoặc cặng 5 rồi thế vô tính nhé bạn!

7 tháng 3 2021

Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)

=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)

=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))

=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)

Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.