Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=sin 150+sin 750-sin 750-sin 150+sin 300
A=sin 300=\(\dfrac{1}{2}\)=0,5
vì cos 150=sin (900-150)=sin 750
cos 750=sin (900-750)=sin 150
bạn giải giúp mình bài này nữa nhé:
B=\(\sin35^0+\sin67^0-\cos23^0-\cos55^0\)
a, \(\cos^215+\cos^225+\cos^235+\cos^245+\sin^235+\sin^225+\sin^215\)
=\(\left(\cos^215+\sin^215\right)+\left(\cos^225+\sin^225\right)+\left(\cos^235+\sin^235\right)+\cos^245\)
=\(1+1+1+\frac{1}{2}=\frac{7}{2}\)
b.\(\sin^210-\sin^220-\sin^230-\sin^240-\cos^240-\cos^220+\cos^210\)
=\(\left(\sin^210+\cos^210\right)-\left(\sin^220+\cos^220\right)-\left(\sin^240+\cos^240\right)-\sin^230\)
=\(1-1-1-\frac{1}{4}=-\frac{5}{4}\)
c,\(\sin15+\sin75-\sin75-\cos15+\sin30=\sin30=\frac{1}{2}\)
Ta có : \(cos30^0=sin60^0\)
\(cos15^0=sin75^0\)
Sắp xếp : \(sin30^0,sin40^0,sin60^0,sin75^0,sin89^0.\)
Ta có: \(\cos30^o=\sin60^0\), \(\cos15^0=\sin75^0\)
mà \(\sin30^0< \sin40^0< \sin60^0< \sin75^0< \sin89^0\)
\(\Leftrightarrow\sin30^0< \sin40^0< \cos60^0< \cos75^0< \sin89^0\)
c) \(cotg44^0.cotg45^0.cotg46^0=cotg45^0=1\)
(vì \(cotg44^0=tg46^0\) (do \(44^0+46^0=90^0\) )
mà \(tg46^0.cot46^0=1\) )
a, \(\sin25^0\)< \(\sin70^0\)
b, \(\cos40^0\)> \(\cos75^0\)
c, \(\sin35^0\)= \(\cos55^0\)
\(\cos55^0\)< \(\cos35^0\)
\(\Rightarrow\)\(\sin35^0\)< \(\cos35^0\)
#mã mã#
\(sin15^o+sin75^o-cos15^o-cos75^o+sin30^o\)
\(=\left(sin15+sin75^o\right)-\left(cos15^o+cos75^o\right)+sin30^o\)
\(=\dfrac{\sqrt{6}}{2}-\dfrac{\sqrt{6}}{2}+\dfrac{1}{2}\)
\(=0+\dfrac{1}{2}\)
\(=\dfrac{1}{2}\)
\(sin15^o+sin75^o-cos15^0-cos75^o+sin30^o\)
\(=cos75^o+cos15^0-cos15^0-cos75^o+sin30^o\)
\(=sin30^o=\dfrac{1}{2}\)