Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}:\frac{4}{3}:\frac{-5}{4}:\frac{6}{5}:...:\frac{-101}{100}\)
<=> \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{-4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{-100}{101}\)
Trong biểu thức A có số số âm là (100-4):2 + 1 =49 số
Vậy A là số âm => \(A=-\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{100}{101}\right)\)
=> \(A=-\left(\frac{1}{2}\cdot\frac{3}{101}\right)=\frac{-3}{202}\)
D = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1.\right)\)
=>\(-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{100^2}.\right)\)
=>\(-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}\)
=>\(-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\right)\)
=>\(-\left(\frac{1.2.3...99}{2.3.4....100}\right)\left(\frac{3.4.5....101}{2.3.4....100}\right)\)
=>\(-\left(\frac{1}{100}.\frac{101}{2}\right)\)
=>\(D=-\frac{101}{200}\)
1/
\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy...
Xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Khi đó:
\(1-\frac{2}{2.3}=\frac{1.4}{2.3}\) ; \(1-\frac{2}{3.4}=\frac{2.5}{3.4}\) ; ... ; \(1-\frac{2}{101.102}=\frac{100.103}{101.102}\)
\(\Rightarrow M=\frac{1.4}{2.3}\cdot\frac{2.5}{3.4}\cdot\cdot\cdot\frac{100.103}{101.102}\)
\(M=\frac{\left(1.2...100\right).\left(4.5...103\right)}{\left(2.3...101\right).\left(3.4...102\right)}=\frac{103}{101.3}=\frac{103}{303}\)
Vậy \(M=\frac{103}{303}\)