Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=x2017+3x4064156+1
=-32017+-(32)4064156+1
=-32017+(-3)8128312+1
=cộng lũy thừa tui mới lớp 6 chưa học nên thành ra vầy là kết quả cuối rồi
\(\frac{x-2017}{2018}-\frac{x-2018}{2017}=\frac{2017}{x-2018}-\frac{2018}{x-2017}\)
\(\Leftrightarrow\)\(\frac{2017\left(x-2017\right)-2018\left(x-2018\right)}{2017.2018}=\frac{2017\left(x-2017\right)-2018\left(x-2018\right)}{\left(x-2017\right)\left(x-2018\right)}\)
Do \(2017\left(x-2017\right)-2018\left(x-2018\right)\ne0\) nên \(\left(x-2017\right)\left(x-2018\right)=2017.2018\)
\(\Leftrightarrow\)\(x^2-4035x+2017.2018=2017.2018\)
\(\Leftrightarrow\)\(x\left(x-4035\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\left(l\right)\\x=4035\left(n\right)\end{cases}}\)
Vậy x = 4035
a, Thay x = -2017 vào biểu thức, ta đc
A=|-2017 + 2018| - 107
A=|1| - 107
A=1 - 107
A= -106
Vậy A = -106
b, Ta có:
|x + 2018| - 107 = |-107|
|x + 2018| - 107 = 107
|x + 2018| = 107 + 107
|x + 2018| = 214
Suy ra x + 2018 = 214 hoặc x + 2018 = -214
--Nếu x + 2018 = 214
x = 214 - 2018
x = -1804
--Nếu x + 2018 = -214
x = -214 - 2018
x = -2232
Vậy x = -1804; x = -2232
Chúc bạn học tốt
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)
\(\Leftrightarrow x+2=41\)
\(\Leftrightarrow x=41-2\)
\(\Leftrightarrow x=39\)
Để \(\text{M= 2017-2016:(2015-x)}\)đạt giá trị nhỏ nhất thì \(2016:\left(2015-x\right)\)đạt giá trị lớn nhất.
\(\Rightarrow2015-x=1\Rightarrow x=2014\)
\(\Rightarrow M=2017-2016:1=2017-2016=1\)
Vậy giá trị nhỏ nhất của M=1 khi x=2014.
a) thay x=\(\frac{-1}{3}\) vào biểu thức A ta có:
A=\(5.\left(\frac{-1}{3}\right)^3-3.\left(\frac{-1}{3}\right)^2-\frac{1}{3}\)
=\(5.\frac{-1}{27}-3.\frac{1}{9}+\frac{1}{3}\)
=\(\frac{-5}{27}-\frac{3}{9}+\frac{1}{3}\)
=\(\frac{-14}{27}+\frac{1}{3}\)
=\(\frac{-5}{27}\)
a) Thay giá trị x vào biểu thức , ta có :
\(A=5.\left(-\frac{1}{3}\right)^3-3.\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{3}\right)\)
\(A=5.\left(-\frac{1}{27}\right)-3.\frac{1}{9}+\frac{1}{3}\)
\(A=-\frac{5}{27}-\frac{1}{3}+\frac{1}{3}\)
\(A=-\frac{14}{27}+\frac{1}{3}\)
\(A=-\frac{5}{27}\)
b) Thay giá trị x vào biểu thức , ta có :
\(3.\left(-\frac{2}{3}\right)^2+5.\left(-\frac{2}{3}\right)^3\)
\(=3.\frac{4}{9}+5.\left(-\frac{8}{27}\right)\)
\(=\frac{4}{3}+\left(-\frac{40}{27}\right)\)
\(=-\frac{4}{27}\)
a) Vì \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(x-3=0\)
\(\Rightarrow x=3\)
Vậy với nghiệm nguyên \(x=3\)thì phương trình đạt GTNN là A=2018
b)Vì \(\left|x-5\right|\ge0\)
\(\Rightarrow\left|x-5\right|+2016\ge2016\)
Dấu "=" xảy ra khi \(x-5=0\)
\(\Rightarrow x=5\)
Vậy với nghiệm nguyên \(x=5\)thì phương trình đạt GTNN là B=2016
c) \(\text{C}=\frac{7}{x-3}\)nhỏ nhất khi \(x-3\)âm và đạt giá trị lớn nhất
\(\Rightarrow x-3< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-3\le-1\)
Dấu "=" xảy ra khi \(x=-1+3=2\)
Vậy với nghiệm nguyên \(x=2\)thì phương trình đạt GTNN là \(\text{C}=\frac{7}{2-3}=-7\)
d)\(\text{D}=\frac{x+8}{x-5}=\frac{x-5+13}{x-5}=\frac{x-5}{x-5}+\frac{13}{x-5}=1+\frac{13}{x-5}\)
D nhỏ nhất khi \(1+\frac{13}{x-5}\)nhỏ nhất
\(1+\frac{13}{x-5}\)nhỏ nhất khi \(\frac{13}{x-5}\)nhỏ nhất
\(\frac{13}{x-5}\)nhỏ nhất khi \(x-5\)âm và đạt GTLN
\(\Rightarrow x-5< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-5\le-1\)
Dấu "=" xảy ra khi \(x=-1+5=4\)
Vậy với \(x=4\)thì biểu thức đạt GTNN là \(\text{D}=1+\frac{4+8}{4-5}=1+\frac{12}{-1}=1-12=-11\)
~Học tốt^^~
Phần kết luận: Vậy với x=...... thì "biểu thức"...
em sửa lại từ phương trình -> biểu thức nha :v a ghi vội nên không để ý
Giải
Ta có: \(a^b=b^c=c^a\)
\(\Leftrightarrow a=b=c\)
\(\Leftrightarrow M=1^{2016}-1^{2017}\)
\(\Leftrightarrow M=1-1\)
\(\Leftrightarrow M=0\)
= \(2x3^{2017}+1\)