\(Q=\dfrac{a^6-2a^5+a-2}{a^5+1}\). Biết \(\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu a :

Ta có : \(\sqrt{5+3x}-\sqrt{5-3x}=a\)

\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)

\(\Leftrightarrow5+3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}+5-3x=a^2\)

\(\Leftrightarrow10-2\sqrt{25-9x^2}=a^2\)

\(\Leftrightarrow2\sqrt{25-9x^2}=10-a^2\)

\(\Leftrightarrow\sqrt{25-9x^2}=\dfrac{10-a^2}{2}\)

\(\Leftrightarrow25-9x^2=\dfrac{\left(a^2-10\right)^2}{2}\)

\(\Leftrightarrow9x^2=25-\dfrac{\left(a^2-10\right)^2}{2}\)

\(\Leftrightarrow3x=\sqrt{\dfrac{50-\left(a^2-10\right)^2}{2}}\)

\(\Leftrightarrow x=\dfrac{\sqrt{50-\left(a^2-10\right)^2}}{3\sqrt{2}}\)

\(P=\dfrac{3\sqrt{2}.\sqrt{10+2\sqrt{\dfrac{10-a^2}{2}}}}{\sqrt{50-\left(a^2-10\right)^2}}\)

Bạn tự rút gọn nữa nhé :))

Câu b : \(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-24}{z}\)

\(=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-12}{z}\)

\(=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{4}{z}\right)\le3-3\left[\dfrac{\left(1+1+2\right)^2}{12}\right]=-1\)

21 tháng 7 2018

2

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)

ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1

=> A ≥ 1

=> Min A =1 khi 1/3 ≤ x ≤ 2/3

31 tháng 7 2018

BTVN nhiều nhỉ?

a,A=-1

b,B=2x-4y

c,C=2x^2-4

Bài 1: 

a: \(A=\left|2a-1\right|-2a\)

TH1: a>=1/2

A=2a-1-2a=-1

TH2: a<1/2

A=1-2a-2a=1-4a

b: \(B=x-2y-\left|x-2y\right|\)

TH1: x>=2y

A=x-2y-x+2y=0

TH2: x<2y

A=x-2y+x-2y=2x-4y

c: \(=x^2+\left|x^2-4\right|\)

TH1: x>=2 hoặc x<=-2

\(A=x^2+x^2-4=2x^2-4\)

TH2: -2<x<2

\(A=x^2+4-x^2=4\)

d: \(D=2x-1-\dfrac{\left|x-5\right|}{x-5}\)

TH1: x>5

\(D=2x-1-1=2x-2\)

TH2: x<5

D=2x-1+1=2x

24 tháng 4 2017

ta có:\(P=\sum\dfrac{y^2z^2}{x\left(y^2+z^2\right)}=\sum\dfrac{\dfrac{1}{x}}{\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)

đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\)thì giả thiết trở thành : \(a^2+b^2+c^2=1\).tìm Min \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\)

ta có:\(\dfrac{a}{b^2+c^2}=\dfrac{a}{1-a^2}=\dfrac{a^2}{a\left(1-a^2\right)}\)

Áp dụng bất đẳng thức cauchy:

\(\left[a\left(1-a^2\right)\right]^2=\dfrac{1}{2}.2a^2\left(1-a^2\right)\left(1-a^2\right)\le\dfrac{1}{54}\left(2a^2+1-a^2+1-a^2\right)^3=\dfrac{4}{27}\)

\(\Rightarrow a\left(1-a^2\right)\le\dfrac{2}{3\sqrt{3}}\)\(\Rightarrow\dfrac{a^2}{a\left(1-a^2\right)}\ge\dfrac{3\sqrt{3}}{2}a^2\)

tương tự với các phân thức còn lại ta có:

\(P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

hay \(x=y=z=\sqrt{3}\)

24 tháng 4 2017

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\\\dfrac{1}{z}=c\end{matrix}\right.\) Thì bài toán trở thành

Cho \(a^2+b^2+c^2=1\) tính GTNN của \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{c^2+a^2}+\dfrac{c}{a^2+b^2}\)

Ta có:

\(a^2+b^2+c^2=1\)

\(\Rightarrow a^2+b^2=1-c^2\)

\(\Rightarrow\dfrac{c}{a^2+b^2}=\dfrac{c^2}{c\left(1-c^2\right)}\)

Mà ta có: \(2c^2\left(1-c^2\right)\left(1-c^2\right)\le\dfrac{\left(2c^2+1-c^2+1-c^2\right)^3}{27}=\dfrac{8}{27}\)

\(\Rightarrow c\left(1-c^2\right)\le\dfrac{2}{3\sqrt{3}}\)

\(\Rightarrow\dfrac{c^2}{c\left(1-c^2\right)}\ge\dfrac{3\sqrt{3}c^2}{2}\)

\(\Rightarrow\dfrac{c}{a^2+b^2}\ge\dfrac{3\sqrt{3}c^2}{2}\left(1\right)\)

Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{b}{c^2+a^2}\ge\dfrac{3\sqrt{3}b^2}{2}\left(2\right)\\\dfrac{a}{b^2+c^2}\ge\dfrac{3\sqrt{3}a^2}{2}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) \(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)

5 tháng 6 2018

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\\ \Leftrightarrow\dfrac{x+y}{xy}+\left(\dfrac{1}{z}-\dfrac{1}{x+y+z}\right)=0\\ \Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\\ \Leftrightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}\right)=0\\ \)

Nếu x+y=0 => x=-y

Nếu

\(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}=0\\ \Rightarrow xz+yz+z^2+xy=0\\ \Rightarrow\left(x+z\right)\left(y+z\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-z\\y=-z\end{matrix}\right.\)

Tự thế vào :v

30 tháng 7 2017

Từ \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)

\(\Rightarrow\dfrac{x+y}{xy}+\dfrac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Ta có: x8 - y8 = (x + y)(x - y)(x2 + y2)(x4 + y4)

y9 + z9 = (y + z)(y8 - y7z + y6z2 - ... + z8)

z10 - x10 = (z + x)(z4 - z3x + z2x2 - zx3 + z4)(z5 - x5)

Vậy M = \(\dfrac{3}{4}\) + (x + y)(y + z)(z + x) = \(\dfrac{3}{4}\)

Tìm GTNN của: a. \(A=x-\sqrt{x}\) b. \(B=x-\sqrt{x-2005}\) c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\) d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\) e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\) f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\) g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\) h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\) i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\) k. \(K=x+y\) biết x và y là các số dương thỏa mãn...
Đọc tiếp

Tìm GTNN của:

a. \(A=x-\sqrt{x}\)

b. \(B=x-\sqrt{x-2005}\)

c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\)

f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)

g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\)

h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\)

i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)

k. \(K=x+y\) biết x và y là các số dương thỏa mãn \(\dfrac{a}{x}+\dfrac{b}{y}=1\)(a và b là các hằng số dương )

l. \(L=\left(x+y\right)\left(y+z\right)\) với các số dương x,y,z và \(xyz\left(x+y+z\right)=1\)

m. \(M=x^4+y^4+z^4\) biết rằng \(xy+yz+zx=1\)

n. \(N=a^3+b^3+c^3\) biết a,b,c lớn hơn -1 và \(a^2+b^2+c^2=12\)

o. \(O=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1

p. \(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x+y+z=1\)

q. \(Q=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x^2+y^2+z^2=1\)

r. \(R=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\) với a,b,c là các số dương và \(a+b+c=6\)

s. \(S=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\) với a,b,c là các số dương và \(a+b+c=1\)

t. \(T=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\) với a,b,c,d là các số dương và \(a+b+c+d=1\)

u. \(U=\dfrac{x^2+y^2}{x-y}\) với x>y>0 và xy=1

v. \(V=\dfrac{5-3x}{\sqrt{1-x^2}}\)

w. \(W=\dfrac{1}{x}+\dfrac{1}{y}\) với x>0, y>0 và \(x^2+y^2=1\)

x. \(X=\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\) với x>0, y>0 và \(x^2+y^2=1\)

y. \(Y=\dfrac{2}{2-x}+\dfrac{1}{x}\) với 0<x<2

z. \(Z=3^x+3^y\) với x+y=4

0