\(\dfrac{200}{2}\) + \(\dfrac{200}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\dfrac{200}{2}+\dfrac{200}{6}+...+\dfrac{200}{9900}\)

\(=200\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{9900}\right)\)

\(=200\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\)

\(=200\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=200\left(1-\dfrac{1}{100}\right)=200\cdot\dfrac{99}{100}=198\)

 

19 tháng 7 2017

a) \(\dfrac{3}{5}+0,145-\dfrac{1}{200}\)

\(=\dfrac{3}{5}+\dfrac{145}{1000}-\dfrac{1}{200}\)

\(=\dfrac{3}{5}+\dfrac{29}{200}-\dfrac{1}{200}\)

\(=\dfrac{120}{200}+\dfrac{29}{200}-\dfrac{1}{200}\)

\(=\dfrac{148}{200}\)

\(=\dfrac{37}{50}\)

b) \(\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{13}\)

\(=31\dfrac{6}{13}+5\dfrac{9}{41}-36\dfrac{6}{13}\)

\(=\left(31\dfrac{6}{13}-36\dfrac{6}{13}\right)+5\dfrac{5}{41}\)

\(=\left(-5\right)+5\dfrac{5}{41}\)

\(=0\dfrac{5}{41}\)

\(=\dfrac{5}{41}\)

c) \(5.2\dfrac{1}{7}+5.7\dfrac{6}{7}\)

\(=5\left(2\dfrac{1}{7}+7\dfrac{6}{7}\right)\)

\(=5\left(9+\dfrac{1}{7}+\dfrac{6}{7}\right)\)

\(=5\left(9+1\right)\)

\(=5.10\)

\(=50\)

19 tháng 7 2017

a) \(\dfrac{3}{5}+0,415-\dfrac{1}{200}\)

\(=\dfrac{3}{5}+\dfrac{83}{200}-\dfrac{1}{200}\\ =\dfrac{120}{200}+\dfrac{83}{200}-\dfrac{1}{200}\\ =\dfrac{120+83-1}{200}=\dfrac{202}{200}=\dfrac{101}{100}\)

b)\(\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{13}\)

\(=\left(\dfrac{409}{13}+\dfrac{214}{41}\right)-\dfrac{474}{13}\)

\(=\dfrac{19551}{533}-\dfrac{474}{13}=\dfrac{9}{41}\)

c)\(5.2\dfrac{1}{7}+5.7\dfrac{6}{7}\)

\(=5.\dfrac{15}{7}+5.\dfrac{55}{7}\\ =5\left(\dfrac{15}{7}+\dfrac{55}{7}\right)\\ =5.10=50\)

4 tháng 3 2017

a) \(\dfrac{7}{13}\)\(\times\)\(\dfrac{7}{15}\)-\(\dfrac{5}{12}\)\(\times\)\(\dfrac{21}{39}+\dfrac{49}{91}\)\(\times\)\(\dfrac{8}{15}\)

= \(\dfrac{7}{13}\)\(\times\)\(\dfrac{7}{15}\)-\(\dfrac{5}{12}\times\dfrac{7}{13}+\dfrac{7}{13}\times\dfrac{8}{15}\)

= \(\dfrac{7}{13}\left(\dfrac{7}{15}-\dfrac{5}{12}+\dfrac{8}{15}\right)\)

= \(\dfrac{7}{13}\times\dfrac{7}{12}\)

= \(\dfrac{49}{156}\)

b) \(\left(\dfrac{12}{199}+\dfrac{23}{200}-\dfrac{34}{201}\right)\times\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

= \(\left(\dfrac{12}{199}+\dfrac{23}{200}-\dfrac{34}{201}\right)\times0\)

= 0

21 tháng 4 2017

Ta có : \(\dfrac{200+201}{201+202}=\dfrac{200}{201+202}+\dfrac{201}{201+202}\)

\(\dfrac{200}{201}>\dfrac{200}{201+202}\) ; \(\dfrac{201}{202}>\dfrac{201}{201+202}\)

\(\Rightarrow\dfrac{200}{201}+\dfrac{201}{202}>\dfrac{200+201}{201+202}\)

21 tháng 4 2017

Ta có \(\dfrac{200+201}{201+202}=\dfrac{200}{201+202}+\dfrac{201}{201+202}\)

\(\dfrac{200}{201}>\dfrac{200}{201+202}\) ; \(\dfrac{201}{202}>\dfrac{201}{201+202}\)

\(\Rightarrow\dfrac{200}{201}+\dfrac{201}{202}>\dfrac{200+201}{201+202}\)

19 tháng 1 2018

\(S^2=\left(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{199}{200}\right)\left(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{199}{200}\right)\\ \text{Ta có:}\\ \dfrac{1}{2}< \dfrac{2}{3}\\ \dfrac{3}{4}< \dfrac{4}{5}\\ \dfrac{5}{6}< \dfrac{6}{7}\\ ...\\ \dfrac{199}{200}< \dfrac{200}{201}\\ \Rightarrow S^2< \left(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{199}{200}\right)\left(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{200}{201}\right)\\ \Leftrightarrow S^2< \dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{199}{200}\cdot\dfrac{200}{201}\\ \Leftrightarrow S^2< \dfrac{1\cdot2\cdot3\cdot...\cdot200}{2\cdot3\cdot4\cdot...\cdot201}\\ \Leftrightarrow S^2< \dfrac{1}{201}< \dfrac{1}{200}\)

Vậy ...

a: \(=\dfrac{77}{12}:\dfrac{11}{4}+\dfrac{45}{4}\cdot\dfrac{2}{15}\)

\(=\dfrac{77}{12}\cdot\dfrac{4}{11}+\dfrac{3}{2}\)

\(=\dfrac{7}{3}+\dfrac{3}{2}=\dfrac{23}{6}\)

b: \(=\left(\dfrac{3}{5}+\dfrac{415}{1000}-\dfrac{3}{200}\right)\cdot\dfrac{8}{3}\cdot\dfrac{1}{4}\)

\(=\dfrac{600+415-15}{1000}\cdot\dfrac{2}{3}=\dfrac{2}{3}\)

c: \(=\dfrac{28}{15}\cdot\dfrac{3}{4}-\left(\dfrac{11}{20}+\dfrac{4}{20}\right)\cdot\dfrac{3}{7}\)

\(=\dfrac{7}{5}-\dfrac{3}{4}\cdot\dfrac{3}{7}=\dfrac{7}{5}-\dfrac{9}{28}=\dfrac{151}{140}\)

b: \(C=\left(\dfrac{12}{199}+\dfrac{23}{200}-\dfrac{34}{201}\right)\cdot\dfrac{3-2-1}{6}=0\)

13 tháng 3 2018

\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{199}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+..+\dfrac{1}{200}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{200}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)

\(=\dfrac{1}{101}+...+\dfrac{1}{199}+\dfrac{1}{200}\)

16 tháng 3 2018

Mình nhờ cô giảng bài này rồi nên cũng biết làm.Nhưng mình cũng like để cảm ơn bạn.

a. ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12

b, A =(1/101+1/102+....+1/150)+(1/151+1/152+.....+1/200)
A>1/150.50+1/200.50=1/3+1/4=7/12
b tách A thành bốn nhóm rồi cũng làm như trên,ta có
A>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8
=107/210+1/8>1/2+1/8=5/8

29 tháng 3 2017

\(B=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+...\dfrac{1}{200}\right)>\dfrac{1}{150}+..\dfrac{1}{150}+\dfrac{1}{200}+..+200=\dfrac{50}{150}+\dfrac{50}{200}=\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{4}{12}+\dfrac{3}{12}=\dfrac{7}{12}\)Vậy ... (ta có điều phải chứng minh )

29 tháng 3 2017

Ta có :\(\dfrac{1}{20}>\dfrac{1}{200}\)

...

\(\dfrac{1}{199}>\dfrac{1}{200}\)

Do đó : \(\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+..+\dfrac{1}{200}=\dfrac{181}{200}>\dfrac{180}{200}=\dfrac{9}{10}\)Vậy ...

10 tháng 4 2018

a) \(1\dfrac{13}{15}.\left(-5\right)^2.3+\left(\dfrac{8}{15}-\dfrac{19}{60}\right):1\dfrac{23}{24}\)

\(=\dfrac{28}{15}.25.3+\dfrac{13}{60}.\dfrac{24}{47}\)

\(=140+\dfrac{26}{235}=140\dfrac{26}{235}\)

b) \(\dfrac{\left(\dfrac{11^2}{200}+0,414:0,01\right)}{\dfrac{1}{12}-37.25+3\dfrac{1}{6}}\)

\(=\dfrac{\left(\dfrac{121}{200}-41,4\right)}{\dfrac{1}{12}-92519+\dfrac{19}{6}}\)

\(=\dfrac{2\dfrac{191}{207}}{-9251575}\)