\(|a-\dfrac{1}{2014}|+|a-\dfrac{1}{2016}|\) , với a =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Thay a=\(\dfrac{1}{2015}\) vào P, ta có:

\(P=\left|\dfrac{1}{2015}-\dfrac{1}{2014}\right|+\left|\dfrac{1}{2015}-\dfrac{1}{2016}\right|\) (*)

\(\left\{{}\begin{matrix}\dfrac{1}{2015}< \dfrac{1}{2014}\\\dfrac{1}{2015}>\dfrac{1}{2016}\end{matrix}\right.\) nên (*) \(\Rightarrow P=\dfrac{1}{2014}-\dfrac{1}{2015}+\dfrac{1}{2015}-\dfrac{1}{2016}=\dfrac{1}{2030112}\)

Vậy ...

3 tháng 8 2017

\(P=\left|a-\dfrac{1}{2014}\right|+\left|a-\dfrac{1}{2016}\right|\\ =\left|\dfrac{1}{2014}-a\right|+\left|a-\dfrac{1}{2016}\right|\\ =\left|\dfrac{1}{2014}-\dfrac{1}{2015}\right|+\left|\dfrac{1}{2015}-\dfrac{1}{2016}\right|\\ =\dfrac{1}{2014}-\dfrac{1}{2015}+\dfrac{1}{2015}-\dfrac{1}{2016}\\ =\dfrac{1}{2014}-\dfrac{1}{2016}\\ =\dfrac{2}{2014\cdot2016}\\ =\dfrac{1}{2030112}\)

2 tháng 4 2017

25

125

2 tháng 4 2017

A=\(\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot\cdot\cdot\dfrac{-2015}{2016}\)

=\(-\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\cdot\cdot\dfrac{2015}{2016}\)

=\(\dfrac{-1}{2016}>\dfrac{-1}{2015}\)

Vậy\(A>\dfrac{-1}{2015}\)

23 tháng 11 2017

1)\(P=\left|a-\dfrac{1}{2014}\right|+\left|a-\dfrac{1}{2016}\right|=\left|\dfrac{1}{2015}-\dfrac{1}{2014}\right|+\left|\dfrac{1}{2015}-\dfrac{1}{2016}\right|\)

Cái này tự tính được nhé

2) \(\dfrac{6}{x+1}.\dfrac{x-1}{3}\in Z\Leftrightarrow\dfrac{6\left(x-1\right)}{3\left(x+1\right)}\in Z\)

\(\Rightarrow6x-6⋮3x+3\)

\(\Rightarrow6x+6-12⋮3x+3\)

\(\Rightarrow12⋮3x+3\)

Ok:>

23 tháng 11 2017

Câu 1:

Thay \(a=\dfrac{1}{2015}\) vào biểu thức \(P=\left|a-\dfrac{1}{2014}\right|+\left|a-\dfrac{1}{2016}\right|\) ta được:

\(\left|\dfrac{1}{2015}-\dfrac{1}{2014}\right|+\left|\dfrac{1}{2015}-\dfrac{1}{2016}\right|\)

\(=\left|\dfrac{2014}{4058210}-\dfrac{2015}{4058210}\right|+\left|\dfrac{2016}{4062240}-\dfrac{2015}{4062240}\right|\)

\(=\left|\dfrac{2014-2015}{4058210}\right|+\left|\dfrac{2016-2015}{4062240}\right|\)

\(=\left|-\dfrac{1}{4058210}\right|+\left|\dfrac{1}{4062240}\right|\)

\(=\dfrac{1}{4058210}+\dfrac{1}{4062240}\)

\(=\dfrac{1008}{4090695680}+\dfrac{1007}{4090695680}\)

\(=\dfrac{1008+1007}{4090695680}\)

\(=\dfrac{2015}{4090695680}\)

\(=\dfrac{2015}{4090695680}\)

\(=\dfrac{1}{2030112}\)

Vậy giá trị của biểu thức P tại \(a=\dfrac{1}{2015}\)\(\dfrac{1}{2030112}\)

14 tháng 12 2017

\(B=\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)

\(B=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+....+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)

\(B=1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{3}{2014}+1\right)+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)\)

\(B=\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+....+\dfrac{2017}{2014}+\dfrac{2017}{2015}+\dfrac{2017}{2016}\)

\(B=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)

\(\dfrac{B}{A}=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}=2017\)

14 tháng 12 2017

\(\dfrac{B}{A}=\dfrac{\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\left(\dfrac{2015}{2}+\dfrac{2}{2}\right)+\left(\dfrac{2014}{3}+\dfrac{3}{3}\right)+...+\left(\dfrac{1}{2016}+\dfrac{2016}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

Vậy \(\dfrac{B}{A}=2017\)

14 tháng 6 2017

a)\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)=\left(x+1\right)\left(\dfrac{1}{13}+\dfrac{1}{14}\right)\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

b)\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(1+\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}=1+\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}\)

\(\Rightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)

Giải tương tự câu a ta được \(x=-2018\)

14 tháng 6 2017

a) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow6006\left(x+1\right)+5460\left(x+1\right)+5005\left(x+1\right)=4620\left(x+1\right)+4290\left(x+1\right)\)

\(\Leftrightarrow\left(6006+5460+5005\right)\cdot\left(x+1\right)=\left(4620+4290\right)\cdot\left(x+1\right)\)

\(\Leftrightarrow16471\left(x+1\right)=8910\left(x+1\right)\)

\(\Leftrightarrow16471x+16471=8910x+8910\)

\(\Leftrightarrow16471x-8910x=8910-16471\)

\(\Leftrightarrow7561x=-7561\)

\(\Rightarrow x=-1\)

Vậy \(x=-1\)

b) \(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(\Rightarrow4096749040\left(x+4\right)+4094735904\left(x+3\right)=4092704785\left(x+2\right)+4090675680\left(x+1\right)\)

\(\Leftrightarrow4096769040x+16387076160+4094735904x+12284207712=4092704785x+8185409570+4090675680x+4090675680\)

\(\Leftrightarrow8191504944x+28671283872=8183380465x+12276085250\)

\(\Leftrightarrow8191504944x-8183380465x=12276085250-28671283872\)

\(\Leftrightarrow8124479x=-16395198622\)

\(\Rightarrow x=-2018\)

Vậy \(x=-2017\)

P/s: đây không phải cách làm tối ưu, vì vậy mình nghĩ bạn nên tham khảo từ các bài làm khác nhé!

Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)

\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)

\(=BC+C-BC-B\)

=C-B

\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)

3 tháng 4 2017

Ta có:

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(1+\dfrac{1}{2}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(P=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(\Rightarrow S=P\Rightarrow S-P=0\)

\(\Rightarrow\left(S-P\right)^{2016}=0^{2016}=0\)

Vậy \(\left(S-P\right)^{2016}=0\)

17 tháng 7 2017

Ta có :

\(\dfrac{2014}{2015}+\dfrac{2015}{2016}+\dfrac{2016}{2014}=\left(1-\dfrac{1}{2015}\right)+\left(1-\dfrac{1}{2016}\right)+\left(1+\dfrac{2}{2014}\right)\) \(=\left(1+1+1\right)-\left(\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{2}{2014}\right)\)

\(=3-\left(\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{2}{2014}\right)\)

Dễ thấy : \(\left(\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{2}{2014}\right)>0\)\(\dfrac{1}{2015}>\dfrac{1}{2016}\)

Do đó \(\dfrac{2014}{2015}+\dfrac{2015}{2016}+\dfrac{2016}{2014}>3\)

~ Học tốt ~

17 tháng 7 2017

@Lâm Gia Bảo lập luận sai --> đáp số đúng là sao?

\(\dfrac{2014}{2015}=1-\dfrac{2014}{2015}\)

\(\dfrac{2015}{2016}=1-\dfrac{1}{2016}\)

\(\dfrac{2016}{2014}=1+\dfrac{2}{2014}\)

công lại

\(VT=3+\left(\dfrac{1}{2014}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2014}-\dfrac{1}{2016}\right)\)

dễ dàng nhận ra

\(\left\{{}\begin{matrix}\dfrac{1}{2014}>\dfrac{1}{2015}\\\dfrac{1}{2014}>\dfrac{1}{2016}\end{matrix}\right.\) \(\Rightarrow VT>3\)