\(\left(\frac{215}{2010}-\frac{120}{2011}\right)\)x 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(\frac{215}{2010}-\frac{120}{2011}\right)\times\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)

\(=\left(\frac{215}{2010}-\frac{120}{2011}\right)\times\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)

\(=\left(\frac{215}{2010}-\frac{120}{2011}\right)\times0=0\)

6 tháng 8 2015

\(\left(\frac{215}{2010}-\frac{120}{2011}\right)\cdot\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)=\left(\frac{215}{2010}-\frac{120}{2011}\right)\left(\frac{1}{12}-\frac{1}{12}\right)=0\cdot\left(\frac{215}{2010}-\frac{120}{2011}\right)=0\)

28 tháng 3 2019

\(B=70\cdot\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)

\(B=70\cdot\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\right]\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\right]\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\right]\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{10}\right)\right]\)

\(B=70\cdot13\cdot\frac{3}{70}\)

\(B=70\cdot\frac{3}{70}\cdot13\)

\(B=3\cdot13\)

\(B=39\)

25 tháng 1 2019

a) (-1)^a =1 với a chẵn, (-1)^a =-1 với a lẻ

\(A=\left(-1\right)^{1+2+3+4+..+2010+2011}=\left(-1\right)^{\frac{2011+1}{2}.2011}=\left(-1\right)^{1006.2011}=1\)

Vì 1006 là số chẵn => 1006.2011 là số chẵn

b) \(B=70.\left(\frac{13.10101}{56.10101}+\frac{13.10101}{72.10101}+\frac{13.10101}{90.10101}\right)=70.\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)=3.13=39\)

c) Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)

=> C=4

28 tháng 2 2019

giúp mk nhanh nhé

ai nhanh mk tk cho

28 tháng 2 2019

B1

a) \(1-\left(5\frac{3}{8}+x-7\frac{5}{24}\right):16\frac{2}{3}=0\)

\(1-\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=0\)

\(1-\left(x-\frac{11}{6}\right).\frac{3}{50}=0\)

\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1-0\)

\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1\)

\(x-\frac{11}{6}=1:\frac{3}{50}\)

\(x-\frac{11}{6}=\frac{50}{3}\)

\(x=\frac{50}{3}+\frac{11}{6}\)

\(x=\frac{37}{2}\)

b) \(\frac{3}{5}+\frac{5}{7}:x=\frac{1}{3}\)

\(\frac{5}{7}:x=\frac{1}{3}-\frac{3}{5}\)

\(\frac{5}{7}:x=-\frac{4}{15}\)

\(x=\frac{5}{7}:\left(-\frac{4}{15}\right)\)

\(x=-\frac{75}{28}\)

c) \(\left(4\frac{1}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)

\(\left(\frac{9}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)

\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{9}.\frac{7}{4}\)

\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{2}\)

\(\frac{2}{5}.x=\frac{9}{2}-\frac{11}{2}\)

\(\frac{2}{5}.x=-1\)

\(x=-1:\frac{2}{5}\)

\(x=-\frac{5}{2}\)

B2

a) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{2}{6}\right).24:5-\frac{9}{22}:\frac{15}{121}\)

\(=\left(\frac{3}{6}+\frac{2}{6}+\frac{2}{6}\right).24:5-\frac{9}{22}.\frac{121}{15}\)

\(=\frac{7}{6}.24:5-\frac{33}{10}\)

\(=28:5-\frac{33}{10}\)

\(=\frac{28}{5}-\frac{33}{10}\)

\(=\frac{56}{10}-\frac{33}{10}\)

\(=\frac{23}{10}\)

b) \(\frac{5}{14}+\frac{18}{35}+\left(1\frac{1}{4}-\frac{5}{4}\right):\left(\frac{5}{12}\right)^2\)

\(=\frac{25}{70}+\frac{36}{70}+\left(\frac{5}{4}-\frac{5}{4}\right):\frac{25}{144}\)

\(=\frac{61}{70}+0:\frac{25}{144}\)

\(=\frac{61}{70}+0\)

\(=\frac{61}{70}\)

14 tháng 5 2017

a,

A = 20102010.[710:78-3.16-22010:22010

= 20102010.[72-48-1]

= 20102010.0 = 0

b,

B = 1

14 tháng 5 2017

\(A=2010^{2010}.\left[7^{10}:7^8-3.16-2^{2010}:2^{2010}\right]\)

\(A=2010^{2010}.\left[7^2-48-1\right]\)

\(A=2010^{2010}.0\)

\(Vay\)\(A=0\)

29 tháng 4 2017

Câu 1 :
 A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
 B = \(\frac{1}{2}\).  \(\frac{2}{3}\).  \(\frac{3}{4}\)+...+  \(\frac{2010}{2011}\).  \(\frac{2011}{2012}\)\(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)=  \(\frac{1}{2012}\)
Câu 2 :
 a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=>  \(3y-2;2x+1\in\: UC\left(-55\right)\)
=>  \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng 

BẢNG TÌM x;y
\(2x+1\) 1-1 5-511-1155-55
\(x\) 0-1 2-35-627-28
\(3y-2\)-5555-1111-55-11
\(3y\)-5357-913-3713
\(y\)\(\frac{-53}{3}\)(loại)19(chọn)-3(chọn)\(\frac{13}{3}\)(loại)-1(chọn)\(\frac{7}{3}\)(loại)\(\frac{1}{3}\)(loại)1(chọn)


\(\Leftrightarrow\)Những cặp (x;y) tìm được là : 
(-1;19)  ;   (2;-3)   ;    (5;-1)    ;    (-28;1)
b) Ta đặt vế đó là A
Ta xét A :   \(\frac{1}{4^2}\)<  \(\frac{1}{2.4}\)
                  \(\frac{1}{6^2}\)<  \(\frac{1}{4.6}\)
                  \(\frac{1}{8^2}\)<  \(\frac{1}{6.8}\)
                          ...
                 \(\frac{1}{\left(2n\right)^2}\)<  \(\frac{1}{\left(2n-2\right).2n}\)

  \(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+  \(\frac{1}{4.6}\)+...+  \(\frac{1}{\left(2n-2\right).2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+  \(\frac{2}{4.6}\)+...+  \(\frac{2}{\left(2n-2\right).2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{4}\)+  \(\frac{1}{4}\)-  \(\frac{1}{6}\)+...+  \(\frac{1}{2n-2}\)-  \(\frac{1}{2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{2n}\)) = \(\frac{1}{2}\).  \(\frac{1}{2}\)-  \(\frac{1}{2}\).  \(\frac{1}{2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{4}\)-  \(\frac{1}{4n}\)<  \(\frac{1}{4}\) ( Vì n \(\in\)N )
  \(\Leftrightarrow\)A <  \(\frac{1}{4}\)( đpcm ) .

29 tháng 4 2017

Bạn Phùng Quang Thịnh làm đúng hết rồi 

\(\left(\frac{12}{32}+\frac{5}{-20}-\frac{10}{24}\right):\frac{2}{3}=\left(\frac{1}{8}-\frac{10}{24}\right):\frac{2}{3}=-\frac{7}{24}:\frac{2}{3}=-\frac{7}{16}\)

\(4\frac{1}{2}:\left(2,5-3\frac{3}{4}\right)+\left(\frac{1}{2}\right)^2=\frac{9}{2}:\left(2,5-\frac{15}{4}\right)+\frac{1}{4}=\frac{9}{2}:-\frac{5}{4}+\frac{1}{4}=-\frac{18}{5}+\frac{1}{4}=-\frac{67}{20}\)

3 tháng 5 2018

\(B=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2010^2-1}{2010^2}\right)\) 

\(B=\left(\frac{\left(2-1\right)\left(2+1\right)}{2^2}\right)...\left(\frac{\left(2010-1\right)\left(2010+1\right)}{2010^2}\right)\)

\(B=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2009.2011}{2010.2010}\)

\(B=\left(\frac{1}{2}.\frac{2}{3}...\frac{2009}{2010}\right)\left(\frac{3}{2}.\frac{4}{3}...\frac{2011}{2010}\right)\) 

\(B=\frac{1}{2010}.\frac{2011}{2}\)

\(B=\frac{2011}{4020}\)