\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{5}+\sqrt{3}}+...+\frac{1}{\sqrt{201...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

Dat bieu thuc tren la A

ta co  \(\frac{1}{\sqrt{n+2}+\sqrt{n}}=\frac{\sqrt{n+2}-\sqrt{n}}{2}\)

ap dung dang thuc tren ta co\(\frac{1}{\sqrt{3}+1}=\frac{\sqrt{3}-1}{2}\)

                        tuong tu ta co \(\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{5}-\sqrt{3}}{2}\)

                                              .........

                                            \(\frac{1}{\sqrt{2017}+\sqrt{2015}}=\frac{\sqrt{2017}-\sqrt{2015}}{2}\)

ta co

\(A=\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+.....+\sqrt{2017}-\sqrt{2015}\right)=\frac{\sqrt{2017}-1}{2}\)

24 tháng 9 2016

\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}=1-\frac{1}{\sqrt{2007}}=\frac{\sqrt{2007}-1}{\sqrt{2007}}\)

16 tháng 7 2018

\(B=\frac{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3+\sqrt{5}}=3-\sqrt{5}\)

\(C=\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)

\(=\frac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)

\(=\frac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{2}\)

\(=\frac{-2\sqrt{3}}{2}=-\sqrt{3}\)

\(D=\frac{2}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}+3}\)

\(=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{6\left(3-\sqrt{3}\right)}{\left(\sqrt{3}+3\right)\left(3-\sqrt{3}\right)}\)

\(=\sqrt{3}-1-\left(\sqrt{3}+2\right)-\left(3-\sqrt{3}\right)\)

\(=\sqrt{3}-1-\sqrt{3}-2-3+\sqrt{3}=\sqrt{3}-6\)

16 tháng 7 2018

Cảm ơn @Đường Quỳnh Gianh nhiều nhé <3 

7 tháng 7 2019

\(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}.\)

\(=\frac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\left(\sqrt{3}-1\right)}+\frac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\left(\sqrt{3}+1\right)}+\frac{5}{\sqrt{6}}\)

\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{3-1}+\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{3+1}+\frac{5}{\sqrt{6}}\)

\(=\frac{\left(\sqrt{3}+1\right)}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{8}}+\frac{5}{\sqrt{6}}\)

\(=...\)

9 tháng 7 2019

\(a,\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)

\(=\frac{2.\left(\sqrt{6}+2+\sqrt{6}-2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\frac{5\sqrt{6}}{6}\)

\(=\frac{4\sqrt{6}}{6-2^2}+\frac{5\sqrt{6}}{6}=2\sqrt{6}+\frac{5\sqrt{6}}{6}\)

\(=\frac{17\sqrt{6}}{6}\)

\(b,\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)

\(=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}\)

\(=\frac{2\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}\)

\(=\frac{2\sqrt{5}}{5+2\sqrt{6}-5}=\sqrt{\frac{5}{6}}\)