Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}=1-\frac{1}{\sqrt{2007}}=\frac{\sqrt{2007}-1}{\sqrt{2007}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\frac{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3+\sqrt{5}}=3-\sqrt{5}\)
\(C=\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
\(=\frac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{2}\)
\(=\frac{-2\sqrt{3}}{2}=-\sqrt{3}\)
\(D=\frac{2}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}+3}\)
\(=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{6\left(3-\sqrt{3}\right)}{\left(\sqrt{3}+3\right)\left(3-\sqrt{3}\right)}\)
\(=\sqrt{3}-1-\left(\sqrt{3}+2\right)-\left(3-\sqrt{3}\right)\)
\(=\sqrt{3}-1-\sqrt{3}-2-3+\sqrt{3}=\sqrt{3}-6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}.\)
\(=\frac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\left(\sqrt{3}-1\right)}+\frac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\left(\sqrt{3}+1\right)}+\frac{5}{\sqrt{6}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{3-1}+\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{3+1}+\frac{5}{\sqrt{6}}\)
\(=\frac{\left(\sqrt{3}+1\right)}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{8}}+\frac{5}{\sqrt{6}}\)
\(=...\)
\(a,\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)
\(=\frac{2.\left(\sqrt{6}+2+\sqrt{6}-2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\frac{5\sqrt{6}}{6}\)
\(=\frac{4\sqrt{6}}{6-2^2}+\frac{5\sqrt{6}}{6}=2\sqrt{6}+\frac{5\sqrt{6}}{6}\)
\(=\frac{17\sqrt{6}}{6}\)
\(b,\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
\(=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}\)
\(=\frac{2\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}\)
\(=\frac{2\sqrt{5}}{5+2\sqrt{6}-5}=\sqrt{\frac{5}{6}}\)
Dat bieu thuc tren la A
ta co \(\frac{1}{\sqrt{n+2}+\sqrt{n}}=\frac{\sqrt{n+2}-\sqrt{n}}{2}\)
ap dung dang thuc tren ta co\(\frac{1}{\sqrt{3}+1}=\frac{\sqrt{3}-1}{2}\)
tuong tu ta co \(\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{5}-\sqrt{3}}{2}\)
.........
\(\frac{1}{\sqrt{2017}+\sqrt{2015}}=\frac{\sqrt{2017}-\sqrt{2015}}{2}\)
ta co
\(A=\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+.....+\sqrt{2017}-\sqrt{2015}\right)=\frac{\sqrt{2017}-1}{2}\)