Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
13/50+9/100+41/100+12/50
=(13/50+12/50)+(9/100+41/100)
=1/2+1/2
=1
11) Ta có:
\(\frac{120-0,5.40.5.0,2.20.0,25-20}{1+5+9+...+33+37}\)
\(=\frac{120-\left(0,5.40\right).\left(5.0,2\right).\left(20.0,25\right)-20}{1+5+9+...+33+37}\)
\(=\frac{120-20.1.5-20}{1+5+9+...+33+37}\)
\(=\frac{120-100-20}{1+5+9+...+33+37}\)
\(=\frac{0}{1+5+9+...+33+37}=0\)
\(\left(2\right)K=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(K=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)
\(K=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(K=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\left(3\right)L=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+...+\frac{5}{100\cdot103}\)
\(L=\frac{5}{3}\cdot\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(L=\frac{5}{3}\cdot\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}\cdot\frac{102}{103}=\frac{510}{309}=\frac{170}{103}\)
Trả lời:
2,\(K=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(K=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(K=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(K=\frac{1}{2}-\frac{1}{100}\)
\(K=\frac{49}{100}\)
3,\(L=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(L=\frac{5}{3}\times\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(L=\frac{5}{3}\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(L=\frac{5}{3}\times\left(\frac{1}{1}-\frac{1}{103}\right)\)
\(L=\frac{5}{3}\times\frac{102}{103}\)
\(L=\frac{170}{103}\)
Học tốt
Bài 1:
\(g.\frac{5}{11}+\frac{6}{11}=\frac{5+6}{11}=\frac{11}{11}=1\)\(\)
\(e.\frac{-17}{25}.\frac{20}{33}+\frac{-17}{25}.\frac{13}{33}+\frac{-3}{25}=\frac{-17}{25}.\left(\frac{20}{33}+\frac{13}{33}\right)+\frac{-3}{25}\)
\(=\frac{-17}{25}.1+\frac{-3}{25}=\frac{-17}{25}+\frac{-3}{25}=\frac{-17-3}{25}=\frac{-20}{25}=\frac{-4}{5}\)
\(d.\frac{5}{7}.\frac{19}{23}+\frac{5}{7}.\frac{5}{23}-\frac{5}{7}.\frac{1}{23}=\frac{5}{7}\left(\frac{19}{23}+\frac{5}{23}-\frac{1}{23}\right)\)
\(=\frac{5}{7}\left(\frac{19+5-1}{23}\right)=\frac{5}{7}.1=\frac{5}{7}\)
\(c.\left(-11\right).\frac{9}{22}=\frac{\left(-11\right).9}{22}=\frac{-99}{22}=\frac{-9}{2}\)
\(b.\frac{5}{6}-\frac{1}{8}=\frac{5.4}{6.4}-\frac{1.3}{8.3}=\frac{20}{24}-\frac{3}{24}=\frac{17}{24}\)
\(a.\frac{2}{3}+\frac{1}{5}-\frac{1}{6}=\frac{2.10}{3.10}+\frac{1.6}{5.6}-\frac{1.5}{6.5}=\frac{20}{30}+\frac{6}{30}-\frac{5}{30}\)
\(=\frac{20+6-5}{30}=\frac{21}{30}=\frac{7}{10}\)
Bài 2:
\(a.\frac{3}{4}+x=\frac{11}{12}\)
\(\Leftrightarrow x=\frac{11}{12}-\frac{3}{4}\)
\(\Leftrightarrow x=\frac{11}{12}-\frac{9}{12}\)
\(\Leftrightarrow x=\frac{2}{12}=\frac{1}{6}\)
\(b.x-\frac{11}{12}=0,5\)
\(\Leftrightarrow x=\frac{1}{2}-\frac{11}{12}\)
\(\Leftrightarrow x=\frac{6}{12}+\frac{11}{12}\)
\(\Leftrightarrow x=\frac{17}{12}\)
1) 4824 - 4824 : 24 - 12 = 4824 - 201 - 12 = 4623 - 12 = 4611
\(1)A=a\frac{1}{3}+a\frac{1}{4}-a\frac{1}{6}=a\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)=a\frac{5}{12}\)
Thay \(a=-\frac{3}{5}\) vào A,ta đc:
\(A=-\frac{3}{5}.\frac{5}{12}=-\frac{1}{4}\)
\(2)B=b\frac{5}{6}+b\frac{3}{4}-b\frac{1}{2}=b\left(\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)=b\frac{13}{12}\)
Thay \(b=\frac{12}{13}\) vào B, ta đc: \(B=b\frac{13}{12}=\frac{12}{13}.\frac{13}{12}=1\)
\(A=\frac{7}{12}+\frac{5}{12}:6-\frac{1}{36}\)
\(=\frac{7}{12}+\frac{5}{72}-\frac{11}{36}\)
\(=\frac{42}{72}+\frac{5}{72}-\frac{22}{72}\)
\(=\frac{25}{72}\)
Bài 1:
a) Ta có: \(\frac{3}{5}+\frac{4}{15}\)
\(=\frac{9}{15}+\frac{4}{15}\)
\(=\frac{13}{15}\)
b) Ta có: \(\frac{-3}{5}+\frac{5}{7}\)
\(=\frac{-21}{35}+\frac{25}{35}=\frac{4}{35}\)
c) Ta có: \(\frac{5}{6}:\frac{-7}{12}\)
\(=\frac{5}{6}\cdot\frac{-12}{7}=\frac{-60}{42}=\frac{-10}{7}\)
d) Ta có: \(\frac{-21}{24}:\frac{-14}{8}\)
\(=\frac{-7}{8}:\frac{-7}{4}\)
\(=\frac{-7}{8}\cdot\frac{4}{-7}=\frac{4}{8}=\frac{1}{2}\)
e) Ta có: \(\frac{-3}{5}\cdot\frac{5}{7}+\frac{-3}{5}\cdot\frac{3}{7}+\frac{-3}{5}\cdot\frac{6}{7}\)
\(=\frac{-3}{5}\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)\)
\(=-\frac{3}{5}\cdot2=\frac{-6}{5}\)
f) Ta có: \(\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{4}{3}\)
\(=\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{1}{3}\cdot4\)
\(=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}-4\right)\)
\(=\frac{1}{3}\cdot\left(-2\right)=\frac{-2}{3}\)
g) Ta có: \(\frac{4}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{19}+\frac{5}{7}\)
\(=\frac{4}{19}\cdot\frac{-3}{7}+\frac{5}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{-3}\)
\(=-\frac{3}{7}\left(\frac{4}{19}+\frac{5}{19}+\frac{-5}{3}\right)\)
\(=\frac{-3}{7}\cdot\left(\frac{27}{57}+\frac{-95}{57}\right)\)
\(=\frac{-3}{7}\cdot\frac{-68}{57}=\frac{68}{133}\)
h) Ta có: \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}\)
\(=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{5}{13}\right)\)
\(=\frac{5}{9}\)
=> ( \(\frac{-5}{2.3}+\frac{-5}{3.4}+\frac{-5}{4.5}+.....+\frac{-5}{9.10}\)):(\(\frac{1}{4}+\frac{7}{6}-\frac{7}{3}\)):\(\frac{24}{33}\)
=>\(\frac{-5}{1}.\)(\(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)):(\(\frac{3}{12}+\frac{14}{12}-\frac{28}{12}\)):\(\frac{24}{33}\)
=>-5.(\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)):(\(\frac{-11}{12}\)):\(\frac{24}{33}\)
=>-5.(\(\frac{1}{2}-\frac{1}{10}\)):\(\frac{-11}{10}\):\(\frac{24}{33}\)
=>-5.\(\frac{2}{5}\):\(\frac{-11}{10}:\frac{24}{33}\)
=>2:\(\frac{-11}{10}:\frac{24}{33}\)
=>\(\frac{-5}{2}\)
mik cảm ỏn nhé