\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(\Rightarrow B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

         \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

           \(=1-\frac{1}{100}\)

            \(=\frac{99}{100}\)

21 tháng 5 2019

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1-\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

\(B=1-\frac{1}{100}=\frac{99}{100}\)

~ Hok tốt ~

21 tháng 3 2020

\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)

\(A=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)

\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{4}-\frac{1}{100}=\frac{25}{100}-\frac{1}{100}=\frac{24}{100}=\frac{6}{25}\)

1 tháng 8 2020

\(\left(2\right)K=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(K=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)

\(K=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(K=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(\left(3\right)L=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+...+\frac{5}{100\cdot103}\)

\(L=\frac{5}{3}\cdot\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(L=\frac{5}{3}\cdot\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}\cdot\frac{102}{103}=\frac{510}{309}=\frac{170}{103}\)

1 tháng 8 2020

Trả lời:

2,\(K=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(K=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(K=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(K=\frac{1}{2}-\frac{1}{100}\)

\(K=\frac{49}{100}\)

3,\(L=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(L=\frac{5}{3}\times\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(L=\frac{5}{3}\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(L=\frac{5}{3}\times\left(\frac{1}{1}-\frac{1}{103}\right)\)

\(L=\frac{5}{3}\times\frac{102}{103}\)

\(L=\frac{170}{103}\)

Học tốt 

b: \(B=1-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{2}-\dfrac{49}{100}=\dfrac{1}{100}\)

19 tháng 4 2017

B = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90

B = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

B = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\)\(\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

B = \(\frac{1}{2}-\frac{1}{10}\)

B = \(\frac{2}{5}\)

19 tháng 4 2017

B=1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90

B=1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10

B=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10

B=1/2-1/10

B=2/5

19 tháng 4 2019

\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

19 tháng 4 2019

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

28 tháng 8 2020

\(=\frac{8}{9}+\frac{1}{2}-\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)

\(=\frac{8}{9}+\frac{1}{2}-\left(\frac{1}{3}-\frac{1}{9}\right)=1+\frac{1}{2}-\frac{1}{3}=1\frac{1}{6}\)

17 tháng 4 2017

A = \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)\(\frac{1}{3}-\frac{1}{10}=\frac{7}{30}\)

17 tháng 4 2017

\(A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}\)

\(A=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)\

\(A=\frac{1}{3}-\frac{1}{10}\)

\(A=\frac{7}{30}\)

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)