\(\frac{1}{2.3}\)- \(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Có sai đề ko bạn

6 tháng 5 2016

\(S=\frac{101}{102}+\frac{1}{1.2.2.3}+\frac{1}{2.3.2.3}+\frac{1}{3.4.2.3}+...+\frac{1}{17.18.2.3}=\frac{101}{102}+\frac{1}{6}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{17.18}\right)\)

Đặt BT trong ngoặc đơn là A

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{18-17}{17.18}=1-\frac{1}{18}=\frac{17}{18}\)

\(S=\frac{101}{120}+\frac{1}{6}.\frac{17}{18}\)

11 tháng 5 2020

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}=\frac{5}{6}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)

29 tháng 6 2020

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

B = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}=\frac{\left(2.3.4.5\right).\left(2.3.4.5\right)}{\left(1.2.3.4\right).\left(3.4.5.6\right)}=\frac{5.2}{1.6}=\frac{5}{3}\)

C = \(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{3}{2}.\frac{56}{305}=\frac{74}{305}\)

29 tháng 6 2020

Bài làm:

1) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}=\frac{49}{50}\)

2) \(B=\frac{2^2.3^2.4^2.5^2}{1.2.3^2.4^2.5.6}=\frac{2.5}{6}=\frac{5}{3}\)

3) \(C=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)

\(C=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(C=\frac{3}{2}\left(\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{61-59}{59.61}\right)\)

\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)

\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)

\(C=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)

29 tháng 4 2018

ra 1 bạn ơi

29 tháng 4 2018

suy ra A=1/23+1/7-1/1009.23.7.1009 phần 1/23+1/7-1/1009+1/7.1/3/1/1009 .23.7.1009+1/30.1009-160

suy ra A=7.1009+23.1009-23.7/7.1009+23.1009-23.7+1+1/7.1009+23.1009-23.7+1=7/1009+23.1009-23.7+1/7.1009+23.1009-23.7+1=1

27 tháng 4 2017

A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102

A=1-1/102=102/102-1/102=101/102

ý b thì chờ mình tí tìm cách lập luận đã nhé

27 tháng 4 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)

\(A=1-\frac{1}{102}\)

\(A=\frac{101}{102}\)

11 tháng 7 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\)\(\left(1-\frac{1}{5}\right)\)

=\(\frac{1}{2}.\)\(\frac{2}{3}\cdot\frac{3}{4}\)\(\cdot\frac{4}{5}\)

=\(\frac{1}{5}\)

11 tháng 7 2016

( 1 - 12 ) x ( 1 - 13 ) x ( 1 - 14 ) x ( 1 - 15 )

\(\left(\frac{2}{2}-\frac{1}{2}\right)\times\left(\frac{3}{3}-\frac{1}{3}\right)\times\left(\frac{4}{4}-\frac{1}{4}\right)\times\left(\frac{5}{5}-\frac{1}{5}\right)\)

\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\)

\(\frac{1\times2\times3\times4}{2\times3\times4\times5}\)

\(\frac{1}{5}\)

<br class="Apple-interchange-newline"><div id="inner-editor"></div>14 18 +116 +  132 164  + \(\frac{1}{128}\) MC : 128

\(\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\)

\(\frac{32+16+8+4=2+1}{128}\)

\(\frac{207}{128}\)

25 tháng 9 2019

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)

\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4.4...100.101}\)

\(=\frac{\left(1.2.3...100\right)\left(1.2.3...100\right)}{\left(1.2.3..100\right)\left(2.3.4...101\right)}=\frac{1}{101}\)

30 tháng 3 2022

a) \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+......+\frac{1}{2017.2022}\)

\(5A=5.\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+.....+\frac{1}{2017.2022}\right)\)

\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+......+\frac{5}{2017.2022}\)

\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+........+\frac{1}{2017}-\frac{1}{2022}\)

\(5A=1-\frac{1}{2022}\)

\(5A=\frac{2022}{2022}-\frac{1}{2022}\)

\(5A=\frac{2021}{2022}\)

\(A=\frac{2021}{2022}\div5\)

\(A=\frac{20201}{10110}\)

TL: 

\(\frac{5}{6}=\frac{1}{2}+\frac{1}{3}\) 

@@@@@@@@@@ 

HT