Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y
=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)
Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0 <=> x = -3 và y = -1
=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5 tại x = -3 và y = -1
=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1
2) \(M=2x^4+3x^2y^2+y^4+y^2\)
\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)
A = ( x - 2 )2 + 2019
( x- 2 )2 \(\ge0\forall x\)
=> ( x - 2)2 + 2019 \(\ge2019\)
=> A \(\ge2019\)
Dấu " = " xảy ra <=> ( x - 2)2 =0
<=> x = 2
b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình
c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020
( 3-x )100 \(\ge0\forall x\)
=> - ( 3-x)100 \(\le0\forall x\)
Tương tự : - 3.( y+2)100 \(\le0\forall y\)
=> C \(\le2020\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
@Shadow@ Đề câu b) đúng rồi đó
\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)
ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)
=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
b) B = 22 + 42 + 62 + ... + 982
\(\frac{1}{4}B=1^2+2^2+3^2+...+49^2\)
\(\frac{1}{4}B=1+2\left(1+1\right)+3\left(2+1\right)+...+49\left(48+1\right)\)
\(\frac{1}{4}B=1+2+1.2+2.3+3+...+48.49+49\)
\(\frac{1}{4}B=\left(1+2+3+...+49\right)+\left(1.2+2.3+...+48.49\right)\)
đặt A = 1.2 + 2.3 +...+ 48.49 ta có:
A = 1.2 + 2.3 +...+ 48.49
3A = 1.2.3 + 2.3.( 4 - 1) + ... + 48.49.( 50 - 47 )
3A = 1.2.3 + 2.3.4 - 1.2.3 +...+ 48.49.50 - 47.48.49
3A = 48.49.50
A = \(\frac{48.49.50}{3}=39200\)
thay A = 39200 vào \(\frac{1}{4}B\) ta có:
\(\frac{1}{4}B=\left(1+2+3+...+49\right)+39200\)
\(\frac{1}{4}B=1225+39200\)
\(\frac{1}{4}B=40425\)
B = 40425.4
B = 161700
vậy B = 161700
3A=1.2.3+2.3.4+3.4.3+.......+99.100.3
3A=1.2.(3-0) + 2.3 (4-1) + 3.4 . (5-2)+.......+ 99.100(101-98)
3A=(1.2.3+2.3.4+3.4.5+......+98.99.100)-(0.1.2+1.2.3+.....+98.99.100)
3A=99.100.101-0
3A=999900
A=999900:3
A=333300
Ta có: \(A=1+x+x^2+x^3+x^4+...+x^{2020}\)
=> \(xA=x+x^2+x^4+x^5+...+x^{2021}\)
=> \(xA-A=x^{2021}-1\)
=> \(\left(x-1\right)A=x^{2021}-1\)
=> \(A=\frac{x^{2021}-1}{x-1}=\frac{\left(-2\right)^{2021}-1}{-2-1}=\frac{-2^{2021}-1}{-3}=\frac{2^{2021}+1}{3}\)
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
Tính 2.B = 2 -22+23-24+........+22021
Lấy 2B + B ta được 3B = 1 + 22021
Vậy B = ( 1+22021) : 3
Ta có : B = 1 - 2 + 22 - 23 + ... + 22020
=> 2B = 2 - 22 + 23 - 24 + ... + 22021
=> 2B + B = ( 2 - 22 + 23 - 24 + ... + 22021 ) + ( 1 - 2 + 22 - 23 + ... + 22020 )
=> 3B = 22021 + 1 => B= \(\dfrac{2^{2021}-1}{3}\)