Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/2 *(1/1*2-1/2*3+1/2*3-1/3*4+........+1/98*99-1/99*100)
=1/2*(1/2-1/99*100)
=1/2*(4950-1/9900)
=4950/19800
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(A=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{99\cdot100}\right]=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
b)\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)
a)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
b)
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+....+\frac{1}{98\cdot99\cdot100}\)
\(=\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+\frac{5-3}{3\cdot4\cdot4}+....+\frac{100-98}{98\cdot99\cdot100}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)
\(=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)
Theo đầu bài ta có:
\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Do \(a+b+c=259\Rightarrow\hept{\begin{cases}a=259-\left(b+c\right)\\b=259-\left(a+c\right)\\c=259-\left(a+b\right)\end{cases}}\)
Từ đó suy ra:
\(\Leftrightarrow Q=\frac{259-\left(b+c\right)}{b+c}+\frac{259-\left(a+c\right)}{a+c}+\frac{259-\left(a+b\right)}{a+b}\)
\(\Leftrightarrow Q=\left(\frac{259}{b+c}-\frac{b+c}{b+c}\right)+\left(\frac{259}{a+c}-\frac{a+c}{a+c}\right)+\left(\frac{259}{a+b}-\frac{a+b}{a+b}\right)\)
\(\Leftrightarrow Q=\left(259\cdot\frac{1}{b+c}+259\cdot\frac{1}{a+c}+259\cdot\frac{1}{a+b}\right)-\left(\frac{b+c}{b+c}+\frac{a+c}{a+c}+\frac{a+b}{a+b}\right)\)
\(\Leftrightarrow Q=259\cdot\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-\left(1+1+1\right)\)
Do \(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}=15\) nên:
\(\Leftrightarrow Q=259\cdot15-3\)
\(\Leftrightarrow Q=3882\)
a=259-(b+c)
b=259-(c+a)
c=259-(a+b)
Thay vào Q
Q=259-(a+b)/a+b+259-(b+c)/b+c+259-(c+a)/c+a
Q=259/a+b+259/b+c+259/c+a-3
Q=259.(1/a+b+1/c+a+1/b)+c-3
Q=259x15-3
Q=3882
Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
Không mất tính tổng quát giả sử \(a\ge b\ge c\ge d\)=>\(a^2\ge b^2\ge c^2\ge d^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)
=>\(A\le\frac{4}{d^2}\)=>\(d^2\le4\)=>\(d\in\text{ }\text{{}\pm1,\pm2\text{ }\)
Xét \(d=\pm1\)=> vô lí
Xét d=\(\pm\)2=> a=b=c=d=\(\pm\)2
=> M=ab+cd=4+4=8
\(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\)
Nhận thấy: \(\left|2x+1\right|\ge0\); \(\left|x+y-\frac{1}{2}\right|\ge0\)
=> \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)
đến đây bạn thay x,y tìm đc vào A để tính nhé
T/c:A=1/1*2*3+1/2*3*4+1/3*4*5+1/4*5*6+...+1/97*98*99+1/98*99*100
2A=2/1*2*3+2/2*3*4+2/3*4*5+2/4*5*6+...+2/97*98*99+1/98*99*100
2A=(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+.....+(1/97*98-1/98*99)+(1/98*99-1/99*100)
2A=1/2+1/99*100
A=tự tính nha
A= [(1/2-1/2*3)/2]+[(1/2-1/3*4)/2]+...+[(1/2-1/99*100)/2]
A=(1/2-1/99*100)/2
A=-101/198/2
A=-101/396