Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=2^3=8\)
B= \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
c) \(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\left(2^8+1\right)}{2^2\left(2^8+1\right)}=2^3=8\)
1.
\(\frac{72^3\times54^2}{108^4}=\frac{\left(8\times9\right)^3\times\left(27\times2\right)^2}{\left(27\times4\right)^4}=\frac{\left(2^3\times3^2\right)^3\times\left(3^3\times2\right)^2}{\left(3^3\times2^2\right)^4}=\frac{\left(2^3\right)^3\times\left(3^2\right)^3\times\left(3^3\right)^2\times2^2}{\left(3^3\right)^4\times\left(2^2\right)^4}=\frac{2^9\times3^6\times3^6\times2^2}{3^{12}\times2^8}=2^3=8\)
2.
\(\frac{4^6\times3^4\times9^5}{6^{12}}=\frac{\left(2^2\right)^6\times3^4\times\left(3^2\right)^5}{\left(2\times3\right)^{12}}=\frac{2^{12}\times3^4\times3^{10}}{2^{12}\times3^{12}}=3^2=9\)
3.
\(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\times\left(2^8+1\right)}{2^2\times\left(2^8+1\right)}=2^3=8\)
\(A=\frac{4157-19}{12471-57}\)\(=\frac{4138}{12414}\)\(=\frac{4138:4138}{12414:4138}\)\(=\frac{1}{3}\)
\(B=\frac{7}{10^2+8.10^2}\)\(=\frac{7}{100+8.100}\)\(=\frac{7}{100+800}\)\(=\frac{7}{900}\)
\(C=\frac{31995}{42660-108}\)\(=\frac{31995}{42552}\)\(=\frac{31995:27}{42552:27}\)\(=\frac{1185}{1576}\)
\(D=\frac{2^{45}.5^3.2^6.3}{8.2^{18}.81.5}=\frac{2^{51}.5^3.3}{2^3.2^{18}.3^4.5}=\frac{2^{51}.5^3.3}{2^{21}.3^4.5}=\frac{2^{30}.5^2}{3^3}\)
k mình nhé.
A=4138/12414=1/3
B=7/900
C=31995/42552=1185/1576
Phần D tui chịu, ahihi
\(\frac{4^6.3^4.9^5}{6^{12}}=\frac{\left(2^2\right)^6.3^4.\left(3^2\right)^5}{2^{12}.3^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
\(\frac{4^6\cdot3^4\cdot9^5}{6^{12}}\)
\(=\frac{2^{12}\cdot3^4\cdot3^{10}}{2^{12}\cdot3^{12}}\)
\(=\frac{1\cdot3^{14}}{1\cdot3^{12}}\)
\(=\frac{3^{14}}{3^{12}}\)
\(=3^2\)
\(=9\)
\(\frac{19.5^{22}-5^{13}-25^{18}}{\left(7.5^{17}\right)^2}\) \(=\frac{19.5^{22}-5^{13}-5^{36}}{7^2.5^{34}}\) \(=\frac{5^{13}\left(19.5^9-1-5^{23}\right)}{7^2.5^{34}}\)
\(=\frac{19.5^9-1-5^{23}}{7^2.5^{21}}\)
Hình như đề bài có vấn đề bn ak
a)\(A=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{3.16}{2^4}=\frac{3.2^4}{2^4}=3\)
b)\(B=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}\left(13+65\right)}{2^8.2^3.13}=\frac{2^{10}.78}{2^{11}.13}=3\)
c)\(C=\frac{4^9.36+64^4}{16^4.100}=\frac{2^{18}.2^2.3^2+2^{24}}{2^{16}.2^2.5^2}=\frac{2^{20}\left(3^2+2^4\right)}{2^{18}.5^2}=\frac{2^2.25}{25}=4\)
A = \(\frac{2^{13}.5^2.2^6.3^4}{8.2^{18}.81.5}\)
= \(\frac{2^{19}.5^2.3^4}{2^3.2^{18}.3^4.5}\)
= \(\frac{2^{19}.5^2.3^4}{2^{21}.3^4.5}\)
= \(\frac{5}{2^2}\) = \(\frac{5}{4}\)
\(A=\frac{2^{13}.5^2.2^6.3^4}{8.2^{18}.81.5}\)
\(A=\frac{2^{19}.5^2.3^4}{2^{21}.3^4.5}=\frac{5}{2^3}=\frac{5}{8}\)