Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-9x+1=0\Rightarrow x^2+1=9x\)
\(A=\frac{x^4+x^2+1}{5x^2}=\frac{x^4+2x^2+1-x^2}{5x^2}=\frac{\left(x^2+1\right)^2-x^2}{5x^2}=\frac{\left(x^2-x+1\right)\left(x^2+x+1\right)}{5x^2}\)
\(=\frac{\left(9x-x\right)\left(9x+x\right)}{5x^2}=\frac{80x^2}{5x^2}=16\left(x\ne0\right)\)
a)Ta có:a2=(x+1/x)2=x2+2+1/x2
=>A=x2+1/x2=a2-2
b)Ta có:a(a2-2)=(x+1/x)(x2+1/x2)=x3+1/x3+x+1/x
=>B=x3+1/x3=a(a2-2)-x-1/x=a(a2-2)-a=a(a2-3)
c)Ta có:(a2-2).a(a2-3)-a=(x2+1/x2)(x3+1/x3)-x-1/x=x5+1/x5+x+1/x-x-1/x=x5+1/x5=C
Ta có:\(10=2xyz\)
=> \(P=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+10}+\frac{10z}{10z+yz+10}\)
\(=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+2xyz}+\frac{2xyz^2}{2xyz^2+yz+2xyz}\)
\(=\frac{1}{2x+2xz+1}+\frac{2x}{1+2x+2xz}+\frac{2xz}{2xz+1+2x}\)
\(=1\)
Vậy P=1
Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+a+b+c=2+2018\)
\(\Leftrightarrow\frac{a+ab+bc}{b+c}+\frac{b+bc+ab}{c+a}+\frac{c+ac+bc}{a+b}=2020\)
\(\Leftrightarrow a\left(\frac{1+b+c}{b+c}\right)+b\left(\frac{1+a+c}{a+c}\right)+c\left(\frac{1+a+b}{a+b}\right)=2020\left(1\right)\)
Vì \(a+b+c=2018\Rightarrow\hept{\begin{cases}a+b=2018-c\\b+c=2018-a\\c+a=2018-b\end{cases}\left(2\right)}\)
Thay (2) vào (1) ta được:
\(a\left(\frac{2019-a}{b+c}\right)+b\left(\frac{2019-b}{a+c}\right)+c\left(\frac{2019-c}{a+b}\right)=2020\)
\(\Leftrightarrow\frac{2019a-a^2}{b+c}+\frac{2019b-b^2}{a+c}+\frac{2019c-c^2}{a+b}=2020\)
\(\Leftrightarrow\frac{2019a}{b+c}-\frac{a^2}{b+c}+\frac{2019b}{a+c}-\frac{b^2}{a+c}+\frac{2019c}{a+b}-\frac{c^2}{a+b}=2020\)
\(\Leftrightarrow2019\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)=2020\)
\(\Leftrightarrow4038-\left(\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)=2020\)( vì \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2\))
\(\Leftrightarrow\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=2018\)
\(\Leftrightarrow\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+1=2019\)
+ \(n\left(n+3\right)+2\) \(=n^2+3n+2\)
\(=n^2+2n+n+2=\left(n+1\right)\left(n+2\right)\)
\(A=\frac{1\cdot4+2}{1\cdot4}\cdot\frac{2\cdot5+2}{2\cdot5}\cdot...\cdot\frac{2019\cdot2022+2}{2019\cdot2022}\)
\(=\frac{2\cdot3}{1\cdot4}\cdot\frac{3\cdot4}{2\cdot5}\cdot...\cdot\frac{2020\cdot2021}{2019\cdot2022}\)
\(=\frac{2\cdot3\cdot..\cdot2020}{1\cdot2\cdot...\cdot2019}\cdot\frac{3\cdot4\cdot...\cdot2021}{4\cdot5\cdot...\cdot2022}\)
\(=2020\cdot\frac{3}{2022}=\frac{1010}{337}\)