\(^{x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x^3-100x^2+100x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

các bạn ơi đây là đề sai đúng ko ?

8 tháng 8 2019

Nếu tính ra thì vẫn đc

\(P\left(x\right)=x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}+...+\left(99+1\right)x-1\)

\(P\left(x\right)=x^{99}-99x^{99}-99x^{98}+99x^{98}-99x^{97}+...+99x+x-1\)

\(P\left(x\right)=x^{98}\left(x-99\right)+x^{97}\left(x-99\right)-x^{96}\left(x-99\right)+...+x\left(x-99\right)-1\)

\(P\left(x\right)=\left(x^{98}+x^{97}-x^{96}+x^{95}-...-x^2+x\right)\left(x-99\right)-1\)

Vẫn đau đầu @@ chắc đề sai thật

31 tháng 5 2019

Bài 1:

\(M\left(1\right)=a+b+6\)

Mà \(M\left(1\right)=0\)

\(\Rightarrow a+b+6=0\)

\(\Rightarrow a+b=-6\)( * )

\(\Rightarrow2a+2b=-12\) (1)

Ta có: \(M\left(-2\right)=4a-2b+6\)

Mà \(M\left(-2\right)=0\)

\(\Rightarrow4a-2b=-6\)(2)

Lấy (1) cộng (2) ta được:

\(6a=-18\)

\(a=-3\)

Thay a=-3 vào (* ) ta được:

\(b=-3\)

Vậy a=-3 ; b=-3

31 tháng 5 2019

Bài 2:

a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)

\(\Leftrightarrow\frac{1}{8}-\frac{2y}{8}=\frac{5}{x}\)

\(\Leftrightarrow\frac{1-2y}{8}=\frac{5}{x}\)

\(\Leftrightarrow\left(1-2y\right).x=5.8\)

\(\Leftrightarrow\left(1-2y\right).x=40\)

Vì \(x,y\in Z\Rightarrow1-2y\in Z\)

mà \(40=1.40=40.1=5.8=8.5=\left(-1\right).\left(-40\right)=\left(-40\right).\left(-1\right)=\left(-5\right).\left(-8\right)=\left(-8\right).\left(-5\right)\)

Thử từng TH

23 tháng 7 2019

a) Vì\(x=99\Rightarrow x+1=100\)

Thay x+1=100 vào biểu thức A ta được :

\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+9\)

\(=x+9\)

\(=99+9\)

\(=108\)

b) Tương tự

23 tháng 7 2019

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)+x\left(x-99\right)-9\)

\(\Rightarrow A=x^4\left(99-99\right)-x^3\left(99-99\right)+x^2\left(99-99\right)+x\left(99-99\right)-9\)

\(\Rightarrow A=x^4.0-x^3.0+x^2.0+x.0-9\)

\(\Rightarrow A=0-0+0+01-9=-9\)

NV
19 tháng 2 2020

\(A=\frac{1}{1.2}-x+\frac{1}{2.3}-x+...+\frac{1}{100.101}-x+100x\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}-100x+100x\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

23 tháng 2 2019

a, f(1) = 100 + 99 + ... + 2 + 1 + 1

=> f(x) = (100 + 1) . 100 : 2 + 1 "100 là số số hạng từ 1 -> 100"

=> f(x) = 4951 

Hihi..

23 tháng 2 2019

b, g(1) = 1 + 1 + 1 +...+ 1 + 1 (2016 số 1 theo cách lấy số mũ lớn nhất của x cộng thêm 1)

g(1) = 1 . 2016

g(1) = 2016

g(-1) = 1 + (-1) + (-1)2 + ... + (-1)2014 + (-1)2015

g(-1) = [ 1 + (-1)2 + ... + (-1)2014 ] + [ (-1) + (-1)3 + ... + (-1)2015 ]

g(-1) = [ 1 . 1008 ] + [ (-1) . 1008 ]

g(-1) = 1008 - 1008

g(-1) = 0

k nha!!

6 tháng 4 2017

do vế trái luôn luôn lớn hơn hoặc =0

=> vế phải cx luôn luôn lớn hơn hoặc =0

=> bỏ giá trị tuyệt đối =100x

có 99x + ........... = 100x

trừ là ra nha bn

6 tháng 4 2017

ta có:

|x+1/1.2|+|x+1/2.3|+...+|x+1/99.100|=100x

=>|x+1/1.2+x+1/2.3+...+x+1/99.100|=100x

<=>|(x+x+x+...+x)+1/1.2+1/2.3+....1/99.100|=100x

<=>|x.99+1-1/2+1/2-1/3+1/3-1/4+.....+1/99-1/100|=100x

<=>|x.99+1-1/100|=100x

<=>|99x+99/100|=100x

Có 2 trường hợp

TH1

99x+99/100=100x

=>100x-99x=99/100

<=>x=99/100

=>x=99/100

TH2:

99x+99/100=-100x

-100x-99x=99/100

<=>-199x=99/100

<=>x=99/-19900( loại vì |99x+99/100| là số dương nên 100x là số dương mà x là sô âm nên 100x là số âm)

15 tháng 11 2017

Bài 1: Tìm GTNN :

\(a,Q\left(x\right)=x^2+100x-1000\)

\(=x^2+100x+2500-2500-1000\)

\(=\left(x^2+100x+2500\right)-3500\)

\(=\left(x^2+2.x.50+50^2\right)-3500\)

\(=\left(x+50\right)^2-3500\)

Ta có :

\(\left(x+50\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+50\right)^2-3500\ge-3500\)

Dấu = xảy ra \(\Leftrightarrow\left(x+50\right)^2=0\)

\(\Leftrightarrow x+50=0\Leftrightarrow x=-50\)

Vậy \(Min_{Q\left(x\right)}=-3500\Leftrightarrow x=-50\)

25 tháng 3 2018

\(P=\left(x-2y\right)^2+\left(y-2012\right)^{2016}\)

\(\left(x-2y\right)^2\ge0\) với ∀ x;y

\(\left(y-2012\right)^{2016}\ge0\) với ∀ y

\(\Rightarrow\) \(P=\left(x-2y\right)^2+\left(y-2012\right)^{2016}\)\(\ge0\) với ∀ x;y

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(y-2012\right)^{2016}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-2012=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4024\\y=2012\end{matrix}\right.\)
Vậy \(Min_P=0\) khi x =4024;y=2012

23 tháng 10 2017

\(\left|x+\dfrac{1}{1\cdot2}\right|+\left|x+\dfrac{1}{2\cdot3}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|\ge0\forall x\)

\(\Rightarrow100x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left|x+\dfrac{1}{1\cdot2}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|=x+\dfrac{1}{1\cdot2}+...+x+\dfrac{1}{99\cdot100}\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1\cdot2}+...+\dfrac{1}{99\cdot100}\right)=100x\)

\(\Rightarrow99x+\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)=100x\)

\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}=x\)

\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=x\)

\(\Rightarrow x=1-\dfrac{1}{100}=\dfrac{99}{100}\)