Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(C=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-1\right)\)
\(C=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-1\right)=x+y-1\) (do x+y-2=0)
Mà x+y-2=0 => x+y-1=1 => C=1
b/ Với x=2; y=2 Ta nhận thấy \(x^3-2y^2=2^3-2.2^2=2^3-2^3=0\) => D=0
a) \(\Rightarrow\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Ánh dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)
\(\Rightarrow\) x = 1 . 18 = 18
y = 1 . 16 = 16
z = 1 . 15 = 15
b)
Từ 4x = 3y ; 7y=5z => \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\) x = 2 . 15 = 30
y = 2 . 20 = 40
z = 2 . 28 = 56
c) từ 10x=6y \(\Rightarrow\) \(\frac{x}{6}=\frac{y}{10}\) \(\left(\frac{x}{6}\right)^2\)=\(\left(\frac{y}{10}\right)^2\) \(\Rightarrow\frac{x^2}{36}\)=\(\frac{y^2}{100}\) \(\Rightarrow\frac{2x^2}{72}=\frac{y^2}{100}\)
áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{2x^2-y^2}{72-100}\) = \(\frac{-28}{-28}\) = 1
\(\Rightarrow\frac{x}{6}=1\) ; \(\frac{y}{10}=1\)
\(\Rightarrow x=6;y=10\)
hoặc \(\Rightarrow\frac{x}{6}=-1;\frac{y}{10}=-1\)
\(\Rightarrow x=-6;y=-10\)
Chúc bạn học tốt
\(A=3x^3y^4+4xy^3-8y^3+2021-3y^4x^3\)
\(\Rightarrow A=\left(3x^3y^4-3y^4x^3\right)+4xy^3-8y^3+2021\)
\(\Rightarrow A=4xy^3-8y^3+2021\)
Thay x = 2; y = -3 ta có:
\(A=4\cdot2\cdot\left(-3\right)^3-8\cdot\left(-3\right)^3+2021\)
\(\Rightarrow A=-216-\left(-216\right)+2021\)
\(\Rightarrow A=2021\)
~~ Chúc bạn học tốt ~~