Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}\)
Ta có: \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}\)
\(=\sqrt{7+2\cdot\sqrt{7}\cdot1+1}-\sqrt{7}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}\)
\(=\left|\sqrt{7}+1\right|-\sqrt{7}\)
\(=\sqrt{7}+1-\sqrt{7}\)
=1
b) Ta có: \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}\)
\(=\sqrt{4+2\cdot2\cdot\sqrt{3}+3}-2\sqrt{3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}\)
\(=\left|2+\sqrt{3}\right|-2\sqrt{3}\)
\(=2+\sqrt{3}-2\sqrt{3}\)
\(=2-\sqrt{3}\)
c) Ta có: \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)
\(=\sqrt{13-2\cdot\sqrt{13}\cdot1+1}+\sqrt{13+2\cdot\sqrt{13}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)
\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)
\(=\sqrt{13}-1+\sqrt{13}+1\)
\(=2\sqrt{13}\)
d) Ta có: \(D=\sqrt{22-2\sqrt{21}}-\sqrt{22+2\sqrt{21}}\)
\(=\sqrt{21-2\cdot\sqrt{21}\cdot1+1}-\sqrt{21+2\cdot\sqrt{21}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{21}-1\right)^2}-\sqrt{\left(\sqrt{21}+1\right)^2}\)
\(=\left|\sqrt{21}-1\right|-\left|\sqrt{21}+1\right|\)
\(=\sqrt{21}-1-\left(\sqrt{21}+1\right)\)
\(=\sqrt{21}-1-\sqrt{21}-1\)
=-2
tớ ko chép lại đề, kí hiệu nhé
(1) \(=\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{\left|\sqrt{6}+\sqrt{5}\right|^2}=\left(\sqrt{6}-\sqrt{5}\right)^2-\left(\sqrt{6}+\sqrt{5}\right)=1-2\sqrt{30}-\sqrt{6}-\sqrt{5}\)
ai ra đề mà để đáp án dài thế này mất thẩm mĩ quá!!!
(2) \(=\sqrt{\left|\sqrt{5}+\sqrt{3}\right|^2}-\sqrt{\left|\sqrt{5}-\sqrt{3}\right|^2}=\left(\sqrt{5}+\sqrt{3}\right)-\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}\)
(3) \(=\sqrt{\left|\sqrt{7}+2\right|^2}-\sqrt{\left|3-\sqrt{5}\right|^2}=\sqrt{7}+2-3+\sqrt{5}=\sqrt{7}+\sqrt{5}-1\)
lại thêm 1 phép tính không đẹp....
(4) \(=\sqrt{\left|3\sqrt{2}-2\right|^2}-\sqrt{\left|3\sqrt{2}+1\right|^2}=3\sqrt{2}-2-3\sqrt{2}-1=-3\)
(5) \(=\sqrt{\left|2\sqrt{3}-1\right|^2}+\sqrt{\left|2\sqrt{3}-3\right|^2}=2\sqrt{3}-1+2\sqrt{3}-3=4\sqrt{3}-4\)
kiểm tra lại kết quả nhé ^^! Cảm ơn!
a)\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{10\left(4-\sqrt{15}\right)}+\sqrt{6\left(4-\sqrt{15}\right)}\)
\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)
\(=5-\sqrt{15}+\sqrt{15}-3\)
\(=2\)
b) \(2\left(\sqrt{10}-\sqrt{2}\right)\left(4+\sqrt{6-2\sqrt{5}}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{5}-1\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=6\sqrt{10}+2\sqrt{50}-6\sqrt{2}-2\sqrt{10}\)
\(=6\sqrt{10}+10\sqrt{2}-6\sqrt{2}-2\sqrt{10}\)
\(=4\sqrt{10}+4\sqrt{2}\)
c) \(\left(\sqrt{7}+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=7\sqrt{7}-7\sqrt{2}+\sqrt{98}-\sqrt{28}\)
\(=7\sqrt{7}-7\sqrt{2}+7\sqrt{2}-2\sqrt{7}\)
\(=5\sqrt{7}\)
d) \(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)
\(=\sqrt{\dfrac{289+42\sqrt{2}}{16}}\)
\(=\dfrac{\sqrt{289+42\sqrt{2}}}{\sqrt{4^2}}\)
\(=\dfrac{\sqrt{\left(1+12\sqrt{2}\right)^2}}{4}\)
\(=\dfrac{1+12\sqrt{2}}{4}\)
e) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{147}-\sqrt{63}+7-\sqrt{21}\)
\(=7\sqrt{3}-\sqrt{63}+7-\sqrt{21}\)
f) bạn xem đề lại nhé
Ta có :
a)\(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}-\sqrt{7}\right)=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)
b)\(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)
c)\(\sqrt{9+4\sqrt{5}}=\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2+\sqrt{5}\right|=2+\sqrt{5}\)
câu đầu bạn xem lại đề đi nha
các phần còn lại
b)B=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)=\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)=\(\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)
c)tính từng căn nha
\(\sqrt{13-4\sqrt{3}}=\sqrt{12-2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)
\(\sqrt{22-12\sqrt{2}}=\sqrt{18-4\sqrt{18}+4}=\sqrt{\left(\sqrt{18}-2\right)^2}=\sqrt{18}-2=3\sqrt{2}-3\)
\(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}=3\sqrt{2}-2\sqrt{3}\)
thay vào tính C đc C=2
d)có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\sqrt{8}+1}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)\(\Rightarrow6\sqrt{2+\sqrt{9+4\sqrt{2}}}=6\sqrt{2+\sqrt{8}+1}=6\sqrt{2+2\sqrt{2}+1}\)
=\(6\sqrt{\left(\sqrt{2}+1\right)^2}=6\left(\sqrt{2}+1\right)=6\sqrt{2}+6\)\(\Rightarrow D=\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2}-6}=\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}\)
=\(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)
sữa lại câu cuối cho Nhã Doanh
\(\sqrt{22-2\sqrt{21}-\sqrt{22+2\sqrt{21}}}=\sqrt{22-2\sqrt{21}-\sqrt{\left(\sqrt{21}+1\right)^2}}\)
\(=\sqrt{22-2\sqrt{21}-\sqrt{21}-1}=\sqrt{21-3\sqrt{21}}\)
\(a.\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
\(b.\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)
\(c.\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)\(d.\sqrt{22-2\sqrt{21}-\sqrt{22+2\sqrt{21}}}=\sqrt{\left(\sqrt{21}-1\right)^2-\sqrt{\left(\sqrt{21}+1\right)^2}}=\sqrt{21}-1-\sqrt{\sqrt{21}+1}\)