\(\sqrt{122^2-22^2}\)

b. ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

a) \(\sqrt{117,5^2-26,5^2-1440}=\sqrt{\left(117,5-26,5\right)\left(117,5+26,5\right)-1440}\)

\(=\sqrt{91.144-1440}=\sqrt{144\left(91-10\right)}=\sqrt{12^2.9^2}=12.9=108\)

b) \(\sqrt{146,5^2-109,5^2+27.256}=\sqrt{\left(146,5-109,5\right)\left(146,5+109,5\right)+27.256}\)

\(=\sqrt{37.256+27.256}=\sqrt{256\left(37+27\right)}=\sqrt{256.64}=\sqrt{16^2.8^2}=16.8=128\)

18 tháng 7 2017

\(a=\sqrt{\left(6,8-3,2\right)\left(6,8+3,2\right)}=\sqrt{3,6\left(10\right)}=\sqrt{36}=6\)

21 tháng 9 2017

a) \(\sqrt{6,8^2-3,2^2}=\sqrt{\left(6,8-3,2\right)\left(6,8+3,2\right)}\)

=\(\sqrt{3,6.10}=\sqrt{36}=6\)

b)\(\sqrt{21,8^2-18,2^2}=\sqrt{\left(21,8-18,2\right)\left(21,8+18,2\right)}\)

=\(\sqrt{3,6.40}=\sqrt{144}=12\)

c)\(\sqrt{117,5^2-26,5^2-1440}=\sqrt{\left(117,5-26,5\right)\left(117,5+26,5\right)-1440}\)

=\(\sqrt{91.144-1440}=\sqrt{144.81}=\sqrt{144}.\sqrt{81}=108\)

d)\(\sqrt{146,5^2-109,5^2+27.256}\)=\(\sqrt{\left(146,5-109,5\right)\left(146,5+109,5\right)+27.256}\)

=\(\sqrt{37.256+\sqrt{27.256}}=\sqrt{64.256}=\sqrt{64}.\sqrt{256}=128\)

26 tháng 6 2017

\(\sqrt{117,5^2-26,5^2}-1440=-202475\)

\(\sqrt{146,5^2-109,5^2+27,256=}-11816494\) 

26 tháng 6 2017

bạn lê nhat phuong oi sai rồi

18 tháng 9 2017

\(\sqrt{117,5^2-26,5^2-1440}\)

\(=\sqrt{\left(117,5+26,5\right)\left(117,5-26,5\right)-144.10}\)

\(=\sqrt{144.91-144.10}\)

\(=\sqrt{144\left(91-10\right)}=\sqrt{144.81}=\sqrt{144}.\sqrt{81}=12.9=108\)

18 tháng 9 2017

\(\sqrt{117,5^2-26,5^2-1440}\)\(=\sqrt{\left(117,5-26.5\right)\left(117.5+26,5\right)-144\cdot10}\)\(=\sqrt{91\cdot144-144\cdot10}\)

\(=\sqrt{144\cdot\left(91-10\right)}\)

\(=\sqrt{144\cdot81}\)

\(=\sqrt{144}\cdot\sqrt{81}\)

\(=12\cdot9=108\)

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

29 tháng 7 2018

sữa lại câu cuối cho Nhã Doanh

\(\sqrt{22-2\sqrt{21}-\sqrt{22+2\sqrt{21}}}=\sqrt{22-2\sqrt{21}-\sqrt{\left(\sqrt{21}+1\right)^2}}\)

\(=\sqrt{22-2\sqrt{21}-\sqrt{21}-1}=\sqrt{21-3\sqrt{21}}\)

29 tháng 7 2018

\(a.\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

\(b.\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)

\(c.\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)\(d.\sqrt{22-2\sqrt{21}-\sqrt{22+2\sqrt{21}}}=\sqrt{\left(\sqrt{21}-1\right)^2-\sqrt{\left(\sqrt{21}+1\right)^2}}=\sqrt{21}-1-\sqrt{\sqrt{21}+1}\)