K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

a)

\(A=x^2y-y+xy^2-x\)

\(A=\left(x^2y-x\right)-\left(y-xy^2\right)\)

\(A=x.\left(xy-1\right)-y.\left(1-xy\right)\)

\(A=x.\left(xy-1\right)+y.\left(xy-1\right)\)

\(A=\left(xy-1\right).\left(x+y\right)\)

Thay \(x=-5\)\(y=2\) vào biểu thức A, ta được:

\(A=\left[\left(-5\right).2-1\right].\left[\left(-5\right)+2\right]\)

\(A=\left(-11\right).\left(-3\right)\)

\(A=33.\)

Vậy giá trị của biểu thức A tại \(x=-5\)\(y=2\)\(33.\)

Chúc bạn học tốt!

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

18 tháng 9 2018

P = ( xy + 1 ) ( x2y2 - xyt + 1 )

   = x3y3 + 1

   = \(\left(5.\frac{3}{5}\right)^3+1\)

   = \(27+1\)

    = 28

18 tháng 9 2018

=28

tính r

Bài 3:

a) Ta có: \(x^2+3x+3\)

\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\)\(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)

b) Ta có: \(Q=x^2+2y^2+2xy-2y\)

\(=x^2+2xy+y^2+y^2-2y+1-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)

Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)

\(\left(y-1\right)^2\ge0\forall y\)

Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1

21 tháng 4 2020

Cảm ơn ạ =)

27 tháng 6 2019

\(A=-2x^2+5x-8\)

\(A=-2\left(x^2-\frac{5}{2}\cdot x+4\right)\)

\(A=-2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}+\frac{39}{16}\right)\)

\(A=-2\left[\left(x-\frac{5}{4}\right)^2+\frac{39}{16}\right]\)

\(A=-2\left(x-\frac{5}{4}\right)^2-\frac{39}{6}\le\frac{-39}{6}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{4}\)

\(B=-x^2-y^2+xy+2x+2y\)

\(2B=-2x^2-2y^2+2xy-4x-4y\)

\(2B=-\left(2x^2+2y^2-2xy+4x+4y\right)\)

\(2B=-\left(x^2-2xy+y^2+x^2+4x+4+y^2+4y+4-8\right)\)

\(2B=-\left[\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2-8\right]\)

\(B=-\frac{\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2}{2}+4\le4\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=-2\)

\(C=\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

\(D=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}\)

\(=1+\frac{2}{\left(x-3\right)^2+3}\le1+\frac{2}{3}=\frac{5}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)

27 tháng 6 2019

cảm ơn nhìu nha

22 tháng 9 2020

Đề bài 1 ấy