Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\frac{43}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\frac{50}{31}\cdot\frac{31}{50}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{\left(\frac{53}{4}-\frac{59}{27}-\frac{65}{6}\right).\frac{5751}{25}+\frac{187}{4}}{\left(\frac{10}{7}+\frac{10}{3}\right):\left(\frac{37}{3}-\frac{100}{7}\right)}=\frac{\left(\frac{4293}{324}-\frac{708}{324}-\frac{3510}{324}\right).\frac{5751}{25}+\frac{187}{4}}{\left(\frac{30}{21}+\frac{70}{21}\right):\left(\frac{259}{21}-\frac{300}{21}\right)}=\frac{\frac{25}{108}.\frac{5751}{25}+\frac{187}{4}}{\frac{100}{21}:\left(-\frac{41}{21}\right)}\)=\(\frac{\frac{213}{4}+\frac{187}{4}}{-\frac{100}{41}}=100:\left(-\frac{100}{4}\right)=-4\)
\(30+\frac{14}{5}:\left(\frac{24}{150}-\frac{270}{150}-\frac{25}{150}\right)=30+\frac{14}{5}:\left(-\frac{271}{150}\right)=30+\left(-\frac{420}{271}\right)=\frac{7710}{271}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
f) \(\left(1:\frac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\cdot\frac{1}{49}\)
\(=\left(1\cdot7\right)^2:\left(2^6:2^5\right)\cdot\frac{1}{49}=7^2\cdot\frac{1}{2}\cdot\frac{1}{49}=49\cdot\frac{1}{49}\cdot\frac{1}{2}=\frac{1}{2}\)
g) \(\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{\left(2^2\right)^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^5}\)
\(=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\left(3^5-3^6\right)}{2^{12}\left(3^6+3^5\right)}=\frac{2^{12}\left[3^5\left(1-3\right)\right]}{2^{12}\left[3^5\left(3+1\right)\right]}=\frac{2^{12}\cdot3^5\cdot\left(-2\right)}{2^{12}\cdot3^5\cdot4}=\frac{-2}{4}=-\frac{1}{2}\)
Bài giải
\(f,\text{ }\left(1\text{ : }\frac{1}{7}\right)^2\left[\left(2^2\right)^3\text{ : }2^5\right]\cdot\frac{1}{49}\)
\(=7^2\left(2^6\text{ : }2^5\right)\cdot\frac{1}{7^2}\)
\(=2\)
\(g,\text{ }\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\cdot3^5\cdot\left(1-3\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}=-\frac{2}{4}=-\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)
\(P=\left(-1,1\right):\left(-3\right)+\frac{1}{3}+\frac{1}{6}:\left(-2\right)\)
\(P=\frac{11}{30}+\frac{1}{3}+\left(-\frac{1}{12}\right)\)
\(P=\frac{37}{60}\)
\(Q=\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right).2\frac{2}{17}\right]\)
\(Q=\left(-0,928\right):\frac{4}{7}:\left[\left(-\frac{119}{36}\right).2\frac{2}{17}\right]\)
\(Q=\left(-1,624\right):\left(-\frac{245}{36}\right)\)
\(Q=\frac{1044}{4375}\)