K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

1/ 

a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)

 b/  \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

    \(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)

      \(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)

                  \(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)

                   \(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)

                                                      Vậy x = 9/25 , x = 4

14 tháng 7 2016

1) a) ĐKXĐ :  \(0\le x\ne\frac{1}{9}\)

b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)

2 tháng 8 2017

\(A=4-\sqrt{21-8\sqrt{5}}=4-\sqrt{4^2-8\sqrt{5}+\left(\sqrt{5}\right)^2}.\)

\(A=4-\sqrt{\left(4-\sqrt{5}\right)^2}=4-\left(4-\sqrt{5}\right)\)

=> \(A=\sqrt{5}\)

24 tháng 8 2020

Mạn phép xin sửa đề bài này thành tìm x nguyên ạ; nếu sai sót xin ib để lm lại:)

a) đk: \(x\ge0\)

+ Nếu: x không là số chính phương => A vô tỉ (loại)

+ Nếu: x là số chính phương => \(\sqrt{x}+2\) là số nguyên

Khi đó để A nguyên => \(\sqrt{x}+2\inƯ\left(8\right)\) , mà \(\sqrt{x}+2\ge2\left(\forall x\right)\)

=> \(\sqrt{x}+2\in\left\{2;4;8\right\}\Rightarrow\sqrt{x}\in\left\{0;2;6\right\}\Rightarrow x\in\left\{0;4;36\right\}\)

b) đk: \(x\ge0\)

Xét 2 TH như ở trên chứng minh x là số chính phương rồi làm như sau:

Ta có: \(B=\frac{\sqrt{x}+10}{\sqrt{x}+3}=1+\frac{7}{\sqrt{x}+3}\)

Để A nguyên => \(\frac{7}{\sqrt{x}+3}\inℤ\Rightarrow\sqrt{x}+3\inƯ\left(7\right)\)

Mà, \(\sqrt{x}+3\ge3\left(\forall x\right)\) => \(\sqrt{x}+3=7\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)

24 tháng 8 2020

a. \(\frac{8}{\sqrt{x}+2}\in Z\)

\(\Rightarrow\sqrt{x}+2\in\left\{\pm8;\pm4;\pm2;\pm1\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{-10;-6;-4;-3;-1;0;2;6\right\}\)

Vì Vx lớn hơn hoặc bằng 0 \(\Rightarrow\sqrt{x}\in\left\{0;2;6\right\}\)

\(\Rightarrow x\in\left\{0;4;36\right\}\)

b. \(B=\frac{\sqrt{x}+10}{\sqrt{x}+3}=\frac{\sqrt{x}+3+7}{\sqrt{x}+3}=1+\frac{7}{\sqrt{x}+3}\)

Để B thuộc Z thì 7 / Vx + 3 thuộc Z

\(\Rightarrow\sqrt{x}+3\in\left\{\pm1;\pm7\right\}\)

Vì Vx lớn hơn hoặc = 0 với mọi x \(\Rightarrow\sqrt{x}=4\)

\(\Rightarrow x=16\)

c,d tương tự

28 tháng 12 2021

dấu sao kia là dấu nhân nhé

28 tháng 12 2021

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)

Thay \(x=\frac{1}{9}\) vào A ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)

2. \(B=...\)

    \(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

    \(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

     \(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{\sqrt{x}+3}{-6}\)

Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)

hay \(P\le-\frac{1}{2}\)

Dấu "=" xảy ra <=> x=0

28 tháng 8 2021
Chờ tui tui đg lm