Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (1+2+3+.....+100).(12+ 22 +.....+102 ).(65.111 - 13.15.37)
=A .B.(65.111-13.5.3.37)
=A.B.(65.111-65.111)
=A.B.0
=0
ta có :
1 đến 100 =
có 100 số hạng
tổng : ( 100 + 1 ) x 100 : 2 = 5050
công thức : ta lấy số lớn nhất trừ số bé nhất trong dãy số trong ngoặc chia số số hạng rồi chia 2
12 + 22 + 32 ........ + 102 =
12 = 1 x 1 = 1 62 = 6 x 6 = 36
22 = 2 x 2 = 4 72 = 7 x 7 = 49
32 = 3 x 3 = 9 .......
42 = 4 x 4 = 16 tổng dãy số là : 1 + 9 + 4 + 16 + 25 + 36 .... = 395
52 = 5 x 5 = 25
65 x 111 x 13 x 15 x 37 = 52056225
Đ/s : ta lấy 3 kết quả nhân với nhau rồi xem có thể xử dụng lũy thừa để rút gọn hay không
a)101+100+...+3+2+1
số số hạng:(101-1):1+1=101
tổng: (101+1)*101:2=5151
Câu trả lời : A= (101-100) + (99-98) + ... + (5-4) + (3-2) +1
A= 1 + 1 + ... + 1 + 1 + 1
A= 1 x 51
A= 51
Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số)
Tổng của tử số của A là:
(101+1).101:2=5151.
Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:
101:2=50(dư 1 số)(số 1).
Vậy tổng mẫu số của A là :
(101-100).50+1=51.
Vậy
A=5151:51=101
Ta có:
65 × 111 - 13 × 15 × 37
= 5 × 13 × 3 × 37 - 13 × 3 × 5 × 37
= 0
Vì 0 nhân với bất kì số nào cũng = 0 nên biểu thức trên = 0
\(\left(1+2+3+...+100\right).\left(1^2+2^2+3^2+...+10^2\right).\left(65.111-13.15.37\right)\)
\(\left(1+2+3+...100\right).\left(1^2+2^2+3^2+...+10^2\right).\left(13.5.111-13.15.37\right)\)
\(\left(1+2+3+...+100\right).\left(1^2+2^2+3^2+...+10^2\right).\left(13.15.37-13.15.37\right)\)
\(=0\)
Giải:
\(B=1+2\cdot\left(1+1\right)+3\cdot\left(2+1\right)+...+99\cdot\left(98+1\right)+100\cdot\left(99+1\right)\)
\(B=1+1\cdot2+2\cdot3\cdot3+...+98\cdot99+99+99\cdot100+100\)
\(B=\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)+\left(1+2+3+...+99+100\right)\)
\(B=333300+5050\)
\(B=3338050\)