\(\frac{a+b}{a-b}\) với b> a> 0 và 2a2+ 2b2=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài làm tại link này nhé!

22 tháng 2 2019

​                           Giải

Ta có : \(2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)


Vì \(b>a>0\) nên loại trường hợp a = 2b

\(\Leftrightarrow2a=b\)

\(\Leftrightarrow\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

Vậy \(A=-3\)

14 tháng 5 2016

e Hoàng Phúc tui co bai tuong tu ne

14 tháng 5 2016

M = 2(a-2ab+b) / 2(a+2ab+b) =ab/9ab = 1/9

lưu ý: a;b binh phuong nhé tui làm bieng viêt

7 tháng 11 2018

\(2a^2+2b^2=5ab\)

<=>   \(2a^2+2b^2-5ab=0\)

<=>  \(2a^2-4ab-ab+2b^2=0\)

<=>   \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)

<=>  \(\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)

Do b > a > 0

=>  b = 2a

\(A=\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

7 tháng 11 2018

\(2a^2+2b^2=5ab\)

<=>   \(2a^2+2b^2-5ab=0\)

<=>  \(2a^2-4ab-ab+2b^2=0\)

<=>   \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)

<=>  \(\left(2a-b\right)\left(a-2b\right)=0\)

<=>  \(\orbr{\begin{cases}2a-b=0\left(L\right)\\a-2b=0\end{cases}}\)

=>  \(a=2b\)

=>  \(A=\frac{a+2b}{2a-b}=\frac{2b+2b}{2.2b-b}=\frac{4b}{3b}=\frac{4}{3}\)

\(2a^2+2b^2=5ab\)

\(\leftrightarrow2a^2-4ab-ab+2b^2=0\leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\leftrightarrow\orbr{\begin{cases}b=2a\\a=2b\end{cases}}\)

TH1 : \(b=2a\)

\(M=\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

Chỉ xảy ra ở TH1 vì \(b>a>0\)nên b=2a

8 tháng 5 2016

\(2a^2+2b^2=5ab\)

<=>\(2a^2-5ab+2b^2=0\)

<=>\(2\left(a^2-\frac{5}{2}ab+b^2\right)=0\) <=> \(a^2-\frac{5}{2}ab+b^2=0\)

<=>\(a^2-2.a.\frac{5}{4}.b+b^2=0\)

<=>\(\left(a-\frac{5}{4}b\right)^2=0\) <=> \(a-\frac{5}{4}b=0\) <=> \(a=\frac{5}{4}b\)

Ta có: \(M=\frac{a+b}{a-b}=\frac{\frac{5}{4}b+b}{\frac{5}{4}b-b}=\frac{\left(\frac{5}{4}+1\right).b}{\left(\frac{5}{4}-1\right).b}=\frac{\frac{9}{4}b}{\frac{1}{4}b}=\frac{\frac{9}{4}}{\frac{1}{4}}=9\)

Vậy M=9

8 tháng 5 2016

(*) bài này có áp dụng HĐT:\(\left(a-b\right)^2=a^2-2ab+b^2\)

16 tháng 5 2017

khó úa z mik ko giai duoc k cho mik ik mik kb cho

17 tháng 7 2017

câu b có phải 2011 hông zậy mà sao lạ dữ

24 tháng 12 2016

Bài 2

\(\left|3x-101\right|=200\)

\(\Rightarrow3x-101=200\) hoặc \(3x-101=-200\)

\(\Rightarrow3x=301\) hoặc \(3x=-99\)

\(\Rightarrow x=\frac{301}{3}\) hoặc \(x=-33\)

Bài 3:

\(\left(7x-1\right)^{12}=25^6\)

\(\Rightarrow\left(7x-1\right)^{12}=\left(5^2\right)^6\)

\(\Rightarrow\left(7x-1\right)^{12}=5^{12}\)

\(\Rightarrow7x-1=5\)

\(\Rightarrow7x=6\)

\(\Rightarrow x=\frac{6}{7}\)