Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Với mọi x thì A= |x+5/8 | \(\ge\)0 .
Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.
Vậy GTNN (A)= 0 khi x= -5/8.
Ta có:
\(A=\left|x+\frac{5}{8}\right|\ge0\)
Dấu "=" xảy ra khi và chỉ khi x = -5/8
Vậy Min A = 0 khi và chỉ khi x = -5/8
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=-|1,4-x|-2\)
Ta có: \(|1,4-x|\ge0;\forall x\)
\(\Rightarrow-|1,4-x|\le0;\forall x\)
\(\Rightarrow-|1,4-x|-2\le0-2;\forall x\)
Hay \(A\le-2;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|1,4-x|=0\)
\(\Leftrightarrow1,4-x=0\)
\(\Leftrightarrow x=1,4\)
Vậy MIN A =-2 \(\Leftrightarrow x=1,4\)
Chỉ tìm được giá trị lớn nhất thôi bạn :\(A=-|1,4-x|-2\)
Vì \(|1,4-x|\ge0\)\(\Rightarrow-|1,4-x|\le0\)
\(\Rightarrow\)\(A_{max}=-2\Leftrightarrow|1,4-x|=0\)
\(\Rightarrow1,4-x=0\Rightarrow x=1,4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bmax khi (x-6)^2 +3 = 3
<=>(x-6)^2 = 0
=>x-6 = 0
=>x = 6
lúc đó B=1/3
vậy Bmax=1/3 khi x=6
nếu thấy sai thi bạn kiểm tra hộ mình cái đề nha!!!(^_^)
![](https://rs.olm.vn/images/avt/0.png?1311)
a;\(10-\left(y^2-25\right)^4\)
vì \(\left(y^2-25\right)^4\ge0\)c với mọi \(Y\varepsilon R\)=>\(10-\left(y^2-25\right)^4\le10\)
vậy giá trị lớn nhất của biểu thức \(10-\left(y^2-25\right)^4\) là 1\(10< =>y^2-25=0=>y=5;y=-5\)
b;\(-125-\left(x-4\right)^2-\left(y-5\right)^2\)=-\(-125-\left[\left(x-4\right)^2-\left(y-5\right)^2\right]\le-125\)
=>giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125
\(< =>\left(x-4\right)^2=0;\left(y-5\right)^2=0=>x=4'y=5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mình cũng nghĩ là mình chép sai
mình vắt óc ra cx chẳng lm đc
chắc là mình nhầm
xl mn nha
có lẽ là \(\frac{8}{25}\)=\(\frac{2^n}{5^{n-1}}\)
\(\dfrac{25^2.125^2}{625^5}=\dfrac{5^4.5^6}{5^{20}}=\dfrac{5^{10}}{5^{20}}=\dfrac{1}{5^{10}}.\)
\(\dfrac{25^2.125^2}{625^5}=\dfrac{\left(5^2\right)^2.\left(5^3\right)^2}{\left(5^4\right)^5}\) \(=\dfrac{5^4.5^6}{5^{20}}\)=\(\dfrac{5^{10}}{5^{20}}\) = \(5^{-5}\)=\(\dfrac{1}{9765626}\)