\(\sqrt{49}\)- 2\(\sqrt{36}\) + 3
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

\(a)\) \(A=\sqrt{49}-2\sqrt{36}+3\sqrt{4}\)

\(A=7-2.6+3.2\)

\(A=7-12+6\)

\(A=1\)

\(b)\) \(B=\frac{1}{2}\sqrt{\frac{144}{225}}-7\sqrt{100}+4\sqrt{\frac{361}{400}}\)

\(B=\frac{1}{2}.\frac{4}{5}-7.10+4.\frac{19}{20}\)

\(B=\frac{2}{5}-70+\frac{19}{5}\)

\(B=\frac{-329}{5}\)

Chúc bạn học tốt ~ 

28 tháng 6 2019

a)(\(\sqrt{2006}-\sqrt{2005}\)).(\(\sqrt{2006}+\sqrt{2005}\))

=\(\sqrt{2006}^2-\sqrt{2005}^2\)

=2006-2005

=1

13 tháng 8 2017

A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\) 

=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

a, \(\left(\sqrt{2006}-\sqrt{2005}\right).\left(\sqrt{2006}+\sqrt{2005}\right)=\left(2006-2005\right)=1\)

25 tháng 6 2019

b.

=\(\frac{7+4\sqrt{3}+14-8\sqrt{3}}{49-48}\left(21+4\sqrt{3}\right)\) 

=\(\left(21-4\sqrt{3}\right)\left(21+4\sqrt{3}\right)\) 

=441-48

393

vậy.......

hc tốt