Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(cos^275+cos^253+cos^217+cos^237\)
ta áp dụng: \(sin^2a+cos^2a=1\)
ta được: \(\left(cos^275+cos^2\left(90-75\right)\right)+\left(cos^253+cos^2\left(90-53\right)\right)\)
=\(1+1=2\)
b) \(\frac{tan^215-1}{cot75-1}-cos75\)
=\(\frac{\left(tan15-1\right)\left(tan15+1\right)}{tan15-1}-cos75\)
=\(tan15+1-sin15\)=sin15\(\left(\frac{1}{cos15}-1+\frac{1}{sin15}\right)\)
a) \(cos^273^o+cos^253^o+cos^217^o+cos^237^o=\left(cos^273^o+cos^217^o\right)+\left(cos^253^o+cos^237^o\right)\)
\(=\left(cos^273^o+sin^273^o\right)+\left(cos^253^o+sin^253^o\right)=1+1=2\)
b) \(\frac{tan^215^o-1}{cotg75^o-1}-cos75^o=\frac{\left(tan15^o-1\right)\left(tan15^o+1\right)}{tan15^o-1}-cos75^o=tan15^o+1-cos75^o\)
\(\frac{1}{x}+\frac{1}{y}=2-\frac{1}{z}\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}=4+\frac{1}{z^2}-\frac{4}{z}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=-\frac{4}{z}\) \(\Rightarrow\frac{1}{z}=-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)=2\Rightarrow\frac{1}{4x^2}-\frac{1}{x}+1+\frac{1}{4y^2}-\frac{1}{y}+1=0\)
\(\Rightarrow\left(\frac{1}{2x}-1\right)^2+\left(\frac{1}{2y}-1\right)^2=0\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x}-1=0\\\frac{1}{2y}-1=0\end{matrix}\right.\)
\(\Rightarrow x=y=\frac{1}{2}\Rightarrow\frac{1}{z}=2-\left(\frac{1}{x}+\frac{1}{y}\right)=-2\Rightarrow z=-\frac{1}{2}\)
\(\Rightarrow P=\left(\frac{1}{2}+1-\frac{1}{2}\right)^{2018}=1^{2018}=1\)
Bạn ghi đề sai ở dữ kiện \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=0\)
Vì điều đó tương đương với \(x=y=z=0\)
c) \(cotg44^0.cotg45^0.cotg46^0=cotg45^0=1\)
(vì \(cotg44^0=tg46^0\) (do \(44^0+46^0=90^0\) )
mà \(tg46^0.cot46^0=1\) )
Do a là nghiệm của pt \(x^2-3x+1=0\) nên \(a^2-3a+1=0\)\(\Leftrightarrow\)\(a^2=3a-1\)
\(\Rightarrow\)\(a^4=\left(3a-1\right)^2=9a^2-6a+1=9\left(3a-1\right)-6a+1=21a-8\)
\(P=\frac{a^2}{a^4+a^2+1}=\frac{3a-1}{21a-8+3a-1+1}=\frac{3a-1}{24a-8}=\frac{3a-1}{8\left(3a-1\right)}=\frac{1}{8}\)
ta có cos60=1/2
sin 60=\(\frac{\sqrt{3}}{2}\)
tan 30=\(\frac{\sqrt{3}}{3}\)
ta thay vào biểu thức trên
=> \(\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}+\frac{1}{\frac{\sqrt{3}}{3}}=2\)
\(\frac{cos60^o}{1+sin60^o}+\frac{1}{tan30^o}=\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}+\frac{1}{\frac{\sqrt{3}}{3}}=\frac{1}{2}.\frac{2}{\sqrt{3}+2}+\sqrt{3}=\frac{1}{\sqrt{3}+2}+\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{4-3}+\sqrt{3}=2-\sqrt{3}+\sqrt{3}=2\)