Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
c) \(\frac{x-3}{x-2}+\frac{x-2}{x-4}=1\) đặt x-2 =t " cho bé hệ số lại
ĐK : \(\left\{\begin{matrix}x\ne2\\x\ne4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t\ne0\\t\ne-2\end{matrix}\right.\)
\(\frac{t-1}{t}=\frac{t}{t-2}\Leftrightarrow\left(t-1\right)\left(t-2\right)=t^2\Leftrightarrow t^2-3t+2=t^2\Rightarrow-3t=-2\)
\(t=\frac{2}{3}\Rightarrow x=2+\frac{2}{3}=\frac{8}{3}\)
a) \(A=\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3x}\) xem lại đề thấy cái mẫu VP vô duyên thế!
b) \(B=\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\) MSC=(x^3-1)
\(B=\frac{2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)-\left(4x^2-1\right)}{MSC}=\frac{\left(2x^2+2x+2\right)+\left(2x^2+x-3\right)-4x^2+1}{MSC}=0\)
\(B=0\Leftrightarrow\frac{3x}{MSC}=0=>x=0\) thảo mãn đk x khác 1
Kết luận: x=0 là nghiệm duy nhất.
Vì số lượng bài khá nhiều và mình cũng không có quá nhiều thời gian nên không tránh khỏi sai sót, nếu phát hiện mong bạn thông cảm! Bài của tớ làm khá tắt bước, chỉ nên tham khảo. Bạn có thể tự biểu diễn tập nghiệm được không?
a. \(x+8>3x-1\)
\(\Leftrightarrow-2x>-9\)
\(\Leftrightarrow x< \frac{9}{2}\)
b. \(3x-\left(2x+5\right)\le\left(2x-3\right)\)
\(\Leftrightarrow3x-2x-5\le2x-3\)
\(\Leftrightarrow-x\le2\)
\(\Leftrightarrow x\ge2\)
c. \(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow2x>-12\Leftrightarrow x>-6\)
d. \(2\left(3x-1\right)-2x< 2x+1\)
\(\Leftrightarrow6x-2-2x< 2x+1\)
\(\Leftrightarrow2x< 3\)
\(\Leftrightarrow x< \frac{3}{2}\)
e. \(\frac{3-2x}{5}>\frac{2-x}{3}\)
\(\Leftrightarrow3\left(3-2x\right)>5\left(2-x\right)\)
\(\Leftrightarrow9-6x>10-5x\)
\(\Leftrightarrow-x>1\) \(\Leftrightarrow x< -1\)
f. \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)
\(\Leftrightarrow x-2-2x+2\le3x\)
\(\Leftrightarrow-4x\le0\Leftrightarrow x\ge0\)
g. \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)
\(\Leftrightarrow2x+2>2x-1\ge24\)
\(\Leftrightarrow2x+2>2x\ge25\)
\(\Leftrightarrow x\ge\frac{25}{2}\)
h. \(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)
\(\Leftrightarrow6+4x+2>2x-1-12\)
\(\Leftrightarrow2x>-25\)
\(\Leftrightarrow x>-\frac{25}{2}\)
i. \(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)
\(\Leftrightarrow x+5-4x-2\le3x+9\)
\(\Leftrightarrow-6x\le6\)
\(\Leftrightarrow x\ge-1\)
j. \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)
\(\Leftrightarrow10x+8-2x+1\ge48\)
\(\Leftrightarrow8x\ge39\)
\(\Leftrightarrow x\ge\frac{39}{8}\)
Bạn tự biểu diễn nghiệm trên trục số nhé!
a) \(x+8>3x-1\)
\(\Leftrightarrow x-3x>-8-1\)
\(\Leftrightarrow-2x>-9\)
\(\Leftrightarrow x< \frac{9}{2}\)
b) 3x − (2x+5) ≤ (2x−3)
\(\Leftrightarrow3x-2x-5\le2x-3\)
\(\Leftrightarrow3x-2x+2x\le5-3\)
\(\Leftrightarrow3x\le2\)
\(\Leftrightarrow x\le\frac{2}{3}\)
c) (x − 3) (x + 3) < x (x + 2) + 3
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow x^2-x^2+2x< 9+3\)
\(\Leftrightarrow2x< 12\)
\(\Leftrightarrow x< 6\)
d) 2 (3x − 1) − 2x < 2x + 1
\(\Leftrightarrow6x-2-2x< 2x+1\)
\(\Leftrightarrow6x-2x+2x< 2+1\)
\(\Leftrightarrow6x< 3\)
\(\Leftrightarrow x< \frac{3}{6}\)
e) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
\(\Leftrightarrow\frac{\left(3-2x\right)\times3}{15}>\frac{\left(2-x\right)\times5}{15}\)
\(\Leftrightarrow9-6x>10-5x\)
\(\Leftrightarrow-6x+5x>-9+10\)
\(\Leftrightarrow-x>1\)
\(\Leftrightarrow x< -1\)
f)\(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)
\(\Leftrightarrow x-2-2x+2\le3x\)
\(\Leftrightarrow-4x\le0\)
\(\Leftrightarrow x\ge0\)
g) \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)
\(\Leftrightarrow\frac{\left(x+1\right)\cdot2}{6}>\frac{2x-1}{6}\ge\frac{4\cdot6}{6}\)
\(\Leftrightarrow2x+2>2x+1\ge24\)
\(\Leftrightarrow2x+2>2x\ge25\)
\(\Leftrightarrow x\ge\frac{25}{2}\)
h)\(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)
\(\Leftrightarrow\frac{1}{6}+\frac{\left(2x+1\right)\cdot2}{6}>\frac{2x-1}{6}-\frac{2\cdot6}{6}\)
\(\Leftrightarrow6+4x+2>2x-1-12\)
\(\Leftrightarrow2x>-21\)
\(\Leftrightarrow x>\frac{-21}{2}\)
i)\(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)
\(\Leftrightarrow\frac{x+5}{6}-\frac{\left(2x+1\right)\cdot2}{6}\le\frac{\left(x+3\right)\cdot3}{6}\)
\(\Leftrightarrow x+5-4x+2\le3x+9\)
\(\Leftrightarrow-3x-x+4x\le9-5-2\)
\(\Leftrightarrow x\le2\)
j) \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)
\(\Leftrightarrow\frac{\left(5x+4\right)\cdot2}{12}-\frac{2x-1}{12}\ge\frac{4\cdot12}{12}\)
\(\Leftrightarrow10x+8-2x-1\ge48\)
\(\Leftrightarrow10x-2x\ge48-8+1\)
\(\Leftrightarrow8x\ge41\)
\(\Leftrightarrow x\ge\frac{41}{8}\)
Mình không chắc là mình làm đúng đâu. Nhưng có sai sót gì thì cứ nói cho mình biết. Chúc bạn học tốt ^-^
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
<=> \(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{1\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
<=> x2+2x-x+2=2
<=> x2+x=2-2
<=> x2+x=0
<=>x(x+1)=0
<=>x=0 hoặc x+1=0
<=>x=0 hoặc x = -1
a) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
<=>\(\frac{1.x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)
<=> x-3 =10x-15
<=> x-10x= -15+3
<=> -9x = -12
<=> x = \(\frac{-12}{-9}\)
<=> x = \(\frac{4}{3}\)
b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{5x+2}{4-x^2}\left(x\ne\pm2\right)\)
\(=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x-8+3x+6-5x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}\)
f) \(x^2+1-\frac{x^4-3x^2+2}{x^2-1}\)
\(=x^2+1-\frac{\left(x^2-2\right)\left(x^2-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2+1-\frac{\left(x^2-2\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2+1-\left(x^2-2\right)\)
\(=x^2+1-x^2+2\)
\(=3\)
= \(\frac{2x+1}{x-2}\cdot\frac{-\left(x-2\right)}{2x+1}\)
= \(\frac{-\left(x-2\right)\left(2x+1\right)}{\left(x-2\right)\left(2x+1\right)}\)
= -1
Vậy ....
hok tốt
...
\(\frac{2x+1}{x-2}:\left(-\frac{2x+1}{x-2}\right)=\frac{2x+1}{x-2}\cdot\left(-\frac{x-2}{2x+1}\right)\)
\(=-\frac{\left(2x+1\right)\cdot\left(x-2\right)}{\left(x-2\right)\cdot\left(2x+1\right)}\)\(=-1\)