Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{3}{5}\right)^{2012}:\left(\frac{9}{25}\right)^{1000}\)
\(=\left(\frac{3}{5}\right)^{2012}:\left[\left(\frac{3}{5}\right)^2\right]^{1000}\)
\(=\left(\frac{3}{5}\right)^{2012}:\left(\frac{3}{5}\right)^{2000}\)
\(=\left(\frac{3}{5}\right)^{12}\)
3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0
nên số mũ chắc chắn bằng 0
mà số nào mũ 0 cũng bằng 1 nên A=1
5/ vì |2/3x-1/6|> hoặc = 0
nên A nhỏ nhất khi |2/3x-6|=0
=>A=-1/3
6/ =>14x=10y=>x=10/14y
23x:2y=23x-y=256=28
=>3x-y=8
=>3.10/4y-y=8
=>6,5y=8
=>y=16/13
=>x=10/14y=10/14.16/13=80/91
8/106-57=56.26-56.5=56(26-5)=59.56
có chứa thừa số 59 nên chia hết 59
4/ tính x
sau đó thế vào tinh y,z
k) \(\left(\frac{1}{9}\right)^{25}:\left(\frac{1}{3}\right)^{30}\)
\(=\left[\left(\frac{1}{3}\right)^2\right]^{25}:\left(\frac{1}{3}\right)^{30}\)
\(=\left(\frac{1}{3}\right)^{50}:\left(\frac{1}{3}\right)^{30}\)
\(=\left(\frac{1}{3}\right)^{50-30}\)
\(=\left(\frac{1}{3}\right)^{20}\)
h) \(\left(\frac{1}{2}\right)^{15}.\left(\frac{1}{4}\right)^{20}\)
\(=\left(\frac{1}{2}\right)^{15}.\left[\left(\frac{1}{2}\right)^2\right]^{20}\)
\(=\left(\frac{1}{2}\right)^{15}.\left(\frac{1}{2}\right)^{40}\)
\(=\left(\frac{1}{2}\right)^{15+40}\)
\(=\left(\frac{1}{2}\right)^{55}\)
a)\(\left(\frac{3}{7}+\frac{1}{2}\right)^2=\left(\frac{6}{14}+\frac{7}{14}\right)^2=\left(\frac{13}{14}\right)^2=\frac{169}{196}\)
b)\(\left(\frac{3}{4}-\frac{5}{6}\right)^2=\left(\frac{9}{12}-\frac{10}{12}\right)^2=\left(-\frac{1}{12}\right)^2=\frac{1}{144}\)
c)\(\frac{5^4\cdot20^4}{25^5\cdot4^5}=\frac{\left(20\cdot5\right)^4}{\left(25\cdot4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
d)\(\left(-\frac{10}{3}\right)^5\cdot\left(-\frac{6}{5}\right)^4=\left(-\frac{10}{3}\right)^4\cdot\left(-\frac{10}{3}\right)\cdot\left(-\frac{6}{5}\right)^4=\left[-\frac{10}{3}\cdot\frac{-6}{5}\right]^4\cdot\frac{-10}{3}=4^4\cdot\frac{-10}{3}=256\cdot\frac{-10}{3}=\frac{-2560}{3}\)
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
\(\left(\frac{2}{5}\right)^{2003}\div\left(\frac{9}{25}\right)^{1000}\)
\(=\left(\frac{2}{5}\right)^{2003}\div\left(\frac{3^2}{5^2}\right)^{1000}\)
\(=\left(\frac{2}{5}\right)^{2003}\div\left(\frac{3}{5}\right)^{2.1000}\)
\(=\left(\frac{2}{5}\right)^{2003}\div\left(\frac{3}{5}\right)^{2000}\)
\(=\left(\frac{2}{5}\right)^{2000}.\left(\frac{2}{5}\right)^3\div\left(\frac{3}{5}\right)^{2000}\)
\(=\left(\frac{2}{5}\right)^{2000}\div\left(\frac{3}{5}\right)^{2000}.\left(\frac{2}{5}\right)^3\)
\(=\left(\frac{2}{5}:\frac{3}{5}\right)^{2000}.\left(\frac{2}{5}\right)^3\)
\(=\left(\frac{2}{3}\right)^{2000}.\left(\frac{2}{5}\right)^3\)
\(=\frac{2^{2000}.2^3}{3^{2000}.5^3}\)
\(=\frac{2^{2003}}{3^{2000}.5^3}\)