
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{6}\)+\(\frac{1}{18}\)+\(\frac{1}{36}\)+\(\frac{1}{60}\)+\(\frac{1}{90}\)\(\frac{1}{126}\)

=1/2.3+1/3.6+1/6.6+1/6.10+1/10.9+1/9.14
=1/2-1/3+1/3-1/6+1/6-1/6+1/6-1/10+1/10-1/9+1/9-1/14
=1/2-1/14
=6/14=3/7
\(\frac{1}{6}+\frac{1}{18}+\frac{1}{36}+\frac{1}{60}+\frac{1}{90}+\frac{1}{126}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot6}+\frac{1}{6\cdot6}+\frac{1}{6\cdot10}+\frac{1}{10\cdot9}+\frac{1}{9\cdot14}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}\)
\(=\frac{3}{7}\)

\(a,\frac{15}{2}-\left(\frac{x}{2}-\frac{3}{4}\right)=\frac{5}{26}\)
\(\frac{x}{2}-\frac{3}{4}=\frac{15}{2}-\frac{5}{26}\)
\(\frac{x}{2}-\frac{3}{4}=39\)
\(\frac{x}{2}=39+\frac{3}{4}\)
\(\frac{x}{2}=\frac{159}{4}\)
\(\Rightarrow\frac{2.x}{4}=\frac{159}{4}\)
\(\Rightarrow2.x=159\)
\(\Rightarrow x=159:2=\frac{159}{2}\)

a) \(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
= \(\left(-\frac{3}{4}+\frac{2}{5}+\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
= \(0:\frac{3}{7}\)
= \(0\)
b) \(\frac{2}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}:\left(\frac{1}{36}-\frac{5}{12}\right)\)
= \(\frac{1}{4}:\frac{1}{6}+\frac{7}{8}:\frac{-7}{18}\)
=\(\frac{1}{4}.6+\frac{7}{8}.\frac{-18}{7}\)
= \(\frac{3}{2}-\frac{3}{4}\)
= \(\frac{3}{4}\)

a) \(\left(\frac{-3}{2}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
= \(\left(\frac{-3}{2}+\frac{2}{5}+\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
= \(\frac{-3}{4}:\frac{3}{7}\)
= \(\frac{-7}{4}\)
b) \(\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}:\left(\frac{1}{36}-\frac{5}{12}\right)\)
\(=\frac{7}{8}:\frac{1}{6}+\frac{7}{8}:\left(\frac{-7}{18}\right)\)
\(=\frac{7}{8}.6+\frac{7}{8}.\left(\frac{-18}{7}\right)\)
\(=\frac{7}{8}.\left(6+\frac{-18}{7}\right)\)
\(=\frac{7}{8}.\frac{24}{7}\)
\(=3\)

a) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(=5.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(=5.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right):2\)
\(=5.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right):2\)
\(=5.\left(1-\frac{1}{101}\right):2=5.\frac{100}{101}:2=\frac{500}{101}.\frac{1}{2}\)\(=\frac{250}{101}\)
b) \(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(=3\left(\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\right)\)\(.\frac{1}{3}\)
\(=(\frac{3}{3.6}+\frac{3}{6.9}+...+\frac{3}{30.33}).\frac{1}{3}\)
\(=(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}).\frac{1}{3}\)
\(=(\frac{1}{3}-\frac{1}{33}).\frac{1}{3}=\frac{10}{33}.\frac{1}{3}=\frac{10}{99}\)

a) \(\frac{-1}{2}+\frac{-1}{9}-\frac{-3}{5}+\frac{1}{2006}-\frac{-2}{7}-\frac{7}{18}+\frac{4}{35}\)
\(=\left(\frac{-1}{2}-\frac{1}{9}-\frac{7}{18}\right)+\left(\frac{3}{5}+\frac{4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-9}{18}-\frac{2}{18}-\frac{7}{18}\right)+\left(\frac{21}{35}+\frac{4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-9-2-7}{18}\right)+\left(\frac{21+4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-18}{18}\right)+\left(\frac{25}{35}\right)+\frac{1}{2006}\)
\(=\left(-1\right)+\frac{5}{7}+\frac{1}{2006}\)\(=\frac{-4005}{14042}\)
b) \(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{2007}-\frac{1}{36}+\frac{1}{15}-\frac{2}{9}\)
\(=\left(\frac{1}{3}+\frac{1}{2007}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)\)
\(=\left(\frac{669}{2007}+\frac{1}{2007}-\frac{446}{2007}\right)-\left(\frac{27}{36}+\frac{1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)\)
\(=\frac{224}{2007}-\frac{28}{36}+\frac{10}{15}\)
\(=\frac{224}{2007}-\frac{1561}{2007}+\frac{1338}{2007}\)\(=\frac{1}{2007}\)
lấy p/s cuối trừ đi p/s đầu
1/18 + 1/36 + ... + 1/29700
= 1/3.6 + 1/3.12 + ... 1/3.9900
= 1/3 . 1/6 + 1/3 . 1/12 + ... + 1/3 . 1/9900
= 1/3 .(1/2.3 +1/3.4 + ... + 1/99.100)
= 1/3 .(1/2 - 1/3 +1/3 -1/4 + ... + 1/99 - 1/100)
= 1/3 .(1/2 - 1/100)
= 1/3 . 49/100
= ... (cái này bạn tự tính nhé!)