\(\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+50}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(=\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{50.51:2}=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{100}\right)=2.\frac{49}{100}=\frac{49}{50}\)

=\(\frac{49}{50}\)

26 tháng 6 2017

Đây mà toán lớp 5 à.

Áp dụng công thức

\(\frac{1}{1+2+...+n}=\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2}{n\left(n+1\right)}\)  ta được

\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+....+50}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{51}\right)=\frac{49}{51}\)

26 tháng 6 2017

Ta có : \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.......+\frac{1}{1+2+3+......+50}\)

\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+......+\frac{1}{\frac{50.51}{2}}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{50.51}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{50.51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{50}-\frac{1}{51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(=2.\frac{1}{2}-2.\frac{1}{51}\)

\(=1-\frac{2}{51}=\frac{49}{51}\)

11 tháng 3 2016

mình biết nè!

19 tháng 9 2020

\(a.1\frac{1}{3}+2\frac{1}{2}\)

\(=\frac{4}{3}+\frac{5}{2}\)

\(=\frac{8}{6}+\frac{15}{6}\)

\(=\frac{23}{6}\)

\(b.3\frac{2}{5}-1\frac{1}{7}\)

\(=\frac{17}{5}-\frac{8}{7}\)

\(=\frac{119}{35}-\frac{40}{35}\)

\(=\frac{79}{35}\)

\(c.3\frac{1}{2}.1\frac{1}{7}\)

\(=\frac{7}{2}.\frac{8}{7}\)

\(=4\)

\(d.4\frac{1}{6}:2\frac{1}{3}\)

\(=\frac{25}{6}:\frac{7}{3}\)

\(=\frac{25}{6}.\frac{3}{7}\)

\(=\frac{25}{14}\)

8 tháng 6 2019

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1275}\)

\(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right)\)

\(2\times(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51})\)

\(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(2\times\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(2\times\frac{49}{102}\)

\(\frac{49}{51}\)

A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 +... + 1/1+2+3+...+50

A = 1/3 + 1/6 + 1/10 + 1/15 + ...+1/1275

Nhân cả hai vế với 1/2, ta có:

A/2 = 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/2550

A/2 = 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + ... + 1/50x51

A/2 = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +..... + 1/50 - 1/51

A/2 = 1-1/51

A/2 = 49/102

A = 49/51

15 tháng 8 2017

Đáp án là \(\frac{3}{5}\)đấy bạn !

98/99 nha bạn nhớ tk mình và kb nha

15 tháng 2 2017

=1/1-1/99

=98/99

31 tháng 7 2016

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2015}\)

\(=\frac{1}{\left(1+0\right).2:2}+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+2015\right).2015:2}\)

\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2015.2016}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

\(=2.\left(1-\frac{1}{2016}\right)\)

\(=2.\frac{2015}{2016}=\frac{2015}{1008}\)